МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой Ядерной физики

СКо√/С.Г. Кадменский

30.08.2021

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.Б.20 Физика

1. Код и наименование направления подготовки/специальности:

01.03.04 Прикладная математика

2. Профиль подготовки:

Применение математических методов к решению инженерных и экономических задач.

- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

кафедра ядерной физики

6. Составители программы:

Долгополов Михаил Анатольевич, к.ф.-м.н., доцент

- **7. Рекомендована:** кафедрой ядерной физики НМС физического факультета №6 от 17.06.21
- 8. Учебный год: 2023/2024 Семестр(ы): 6

9.Цели и задачи учебной дисциплины:

Предлагаемая примерная программа по курсу физики соответствует нефизическим естественно-научным направлениям высшей школы. В сочетании с другими дисциплинами общего естественно-научного цикла курс физики, соответствующий этой программе, должен формировать цельное представление о процессах и явлениях, происходящих в неживой и живой природе, научный способ мышления, умение видеть естественно-научное содержание проблем, возникающих в практической деятельности специалиста. Курс физики имеет особое значение, поскольку физика, изучающая наиболее общие свойства раз-

личных видов материи и форм их существования, лежит в основе всех наук о природе, и ее методы исследования широко используются этими науками. В методологическом плане большое значение имеют иллюстрации противоречивого развития физических гипотез и теорий, внутренней связи различных разделов физики, формулирование физических законов и теорий с применением адекватного математического аппарата, количественного описания свойств модельных систем.

10. Место учебной дисциплины в структуре ООП:

Дисциплина «Физика» относится к обязательным дисциплинам базовой части Б1. Для овладения курсом студент должен овладеть такими дисциплинами, как Математический анализ, Дифференциальные уравнения,

дисциплины, для которых данная дисциплина является предшествующей: Теоретическая механика, Математическое моделирование.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников): ОПК-1.1; ОПК-1.2; ОПК-1.3

Результатом глубокой проработки курса должна быть целостная система знаний, формирующая физическую картину окружающего мира, умение строить физические модели и решать конкретные задачи заданной степени сложности.

Программа в целом соответствует сложившемуся историко-индуктивному подходу к университетскому курсу физики на естественных факультетах, позволяющему, с одной стороны, в полной мере представить истоки современных научных гипотез и теорий, их развитие по мере накопления знаний, а с другой - реализовать последовательность в изложении материала, при которой изучаются все более сложные формы движения материи.

Код	Название	Код(ы)	Индикатор(ы)	Планируемые результаты
	компетенции		0.5	обучения
ОПК-1	Способен	ОПК-1.1	Обладает базовыми	знать: как использовать
	применять		знаниями, полученными в	фундаментальные знания в
	знание		области математических и	области физики в будущей
	фундаментально		(или) естественных наук	профессиональной
	й математики и			деятельности.
	естественно-нау			уметь: применять
	чных дисциплин			фундаментальные знания в
	при решении			области физики в будущей
	задач в области			профессиональной деятельности
	естественных			владеть (иметь навык(и)):
	наук и			методами в области физики.
	инженерной	ОПК-1.2	Владеет навыками	Владеть: навыками построения и
	практике		использования	реализации основных
			математических методов и	математических алгоритмов,
			моделей для решения	навыками анализа
			исследовательских задач	математических проблем;
				понятийным и формальным
				математическим аппаратом
				Уметь: самостоятельно находить
				взаимосвязь между различными
				понятиями, используемыми в
				данной дисциплине, применять
				методы фундаментальной и
				прикладной математики для
				решения задач; применять
				методы математического
				моделирования к решению
				конкретных задач
				Знать: Основные понятия, идеи,
				методы, связанные с
				дисциплинами фундаментальной

ОПК-1.3	Осуществляет поиск, сбор,	математики, методы математического моделирования, формулировки и доказательства утверждений, возможные сферы их связи и приложения в других областях математического знания Владеть: навыками
OHK-1.3	Осуществляет поиск, соор, хранение, обработку, представление информации при решении задач профессиональной деятельности	владеть: навыками компьютерной обработки вычислительных задач, навыками использования прикладного программного обеспечения для решения задач в профессиональной деятельности, навыками работы с программными продуктами и информационными ресурсами Уметь: строить математические алгоритмы, модели и реализовывать их с помощью языков программирования, применять математический язык, методы при построении моделей объектов профессиональной деятельности с использованием инструментальных средств компьютерного моделирования; самостоятельно расширять и углублять знания в области информационных технологийУ Знать: профессиональную терминологию, содержание ключевых понятий и определений, используемых в теории и практике применения информационных технологий в науке и образовании, информационные ресурсы и базы данных по научно-исследовательской теме

12. Объем дисциплины в зачетных единицах/час. — 3/108.

Форма промежуточной аттестации зачет.

13. Трудоемкость по видам учебной работы 13.

Вид учебной работы	Трудоемкость			
	Всего	По семестрам		
		6 семестр		
Аудиторные занятия	48	48		
в том числе:	32	32		
лекции				
практические	16	16		
лабораторные	-	-		
Самостоятельная работа	60	60		
Форма промежуточной аттестации	Зачет - 0 час	Зачет - 0 час		
Итого:	108	108		

13.1. Содержание дисциплины

п/п	Наименование раздела дис- циплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК *
		1. Лекции	
1	Введение.	Место физики в системе наук о природе. Эксперимент и теория в физических исследованиях. Физические модели.	
2	І. Классическая механика	 Кинематика материальной точки. Относительность движения. Системы отсчета. Координатная и векторная формы описания движения материальной точки. Перемещение, скорость, ускорение. Тангенциальное и нормальное ускорения. Кинематика движения по криволинейной траектории. Движение по окружности. Угловая скорость и угловое ускорение и их связь с линейными характеристиками движения. Кинематика материальной точки в движущейся системе координат. Преобразования Галилея. Классический закон сложения скоростей. Динамика материальной точки Взаимодействие материальных тел. Инерциальные и неинерциальные системы координат. Законы Ньютона. Масса. Сила. Управ нения движения. Роль начальных условий. Принцип относительности Галилея. Фундаментальные взаимодействия в природе. Силы в классической механике. Закон всемирного тяготения. Свойства сил тяжести, упругости, трения. Движение материальной точки в неинерциальной системе отсчета. Силы инерции. Законы сохранения в механике. Колебательное движение. 	
3	Молекулярная физика и тер- модинамика	 Основные представления молекулярно-кинетической теории. Основы термодинамики Реальные газы 	
4	III. Электричество и магнетизм Электростатика.	Электростатика. Электрический заряд. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Потенциал. Разность потенциалов. Диэлектрик в электрическом поле. Диполь. Дипольный момент. Вектор поляризации. Электростатическая теорема Гаусса. Вектор электрической индукции. Уравнение Пуассона. Условия на границе раздела двух сред. Проводник в электрическом поле. Распределение зарядов на проводнике. Электрическое поле внутри и вне проводника. Электростатическая защита. Электрическая емкость. Конденсаторы. Энергия электрического поля.	

5	Поотодиний одоктом одок	Постопиний опоитриноский тох. Сило и плотисст	
	Постоянный электрический	Постоянный электрический ток. Сила и плотность	
	ток.	тока. Закон Ома для участка цепи и замкнутого	
		контура. Сторонние силы. Электродвижущая сила.	
		Закон Ома в дифференциальной форме. Разветв-	
		ленные электрические цепи. Правила Кирхгофа.	
6	Магнитное поле тока.	Работа и мощность электрического тока. Закон	
O	імагнитное поле тока.	Магнитное поле тока. Законы Био-Савара-Лапласа	
		и Ампера. Сила Лоренца. Вектор магнитной	
		индукции. Поток вектора магнитной индукции	
		через замкнутую поверхность. Теорема о	
		циркуляции вектора индукции магнитного поля.	
		Магнитные свойства вещества. Магнитная	
_		восприимчивость и магнитная проницаемость.	
7	Переходные процессы в це-	Переходные процессы в цепях с емкостью и	
	пях с емкостью и индуктив-	индуктивностью. Условие квазистационарности	
	ностью.	Закон Ома для цепей переменного тока с	
		омическим сопротивлением, емкостью и	
		индуктивностью. Реактивное сопротивление.	
		Мощность переменного тока. Колебательный	
_		контур. Свободные колебания. Собственная	
8	Оптика	Обобщения теории Максвелла. Вихревое	
		электрическое поле. Ток смещения. Система	
		уравнений Максвелла в интегральной форме.	
		Электромагнитные волны. Волновое уравнение.	
		Скорость распространения электромагнитных	
		волн. Энергия и импульс электромагнитного поля.	
9	Ү. Элементы квантовой тео-	Элементарная квантовая теория излучения света.	
	рии. Основы атомной и	Атом Бора. Спонтанное и вынужденное излучение.	
	ядерной физики	Лазеры. Спектры излучения и поглощения света для	
		атомов и молекул. Опыты Резерфорда. Постулаты	
		Бора. Опыт Франка и Герца.	
		Атомы водорода и щелочных металлов. Спин	
		электрона. Магнитный момент атома. Эффект	
		Зеемана. Принцип Паули. Периодическая система	
		элементов Д.И.Менделеева.	
		Уравнение Шредингера. Корпускулярно-волновой	
		дуализм: фотоны и микрочастицы. Волновая	
		функция и ее статистическое толкование.	
		Квантование энергии и момента импульса. Состав	
		ядра атома. Взаимодействие нуклонов в ядре.	
		2. Практические занятия	
1	І. Классическая механика	1. Кинематика материальной точки.	
		1.1. Относительность движения. Системы отсчета.	
		Координат ная и векторная формы описания движения материальной точки. Перемещение,	
		скорость, ускорение. Тангенциальное и нормальное	
		ускорения. Кинематика движения по криволинейной	
		траектории. Движение по окружности. Угловая	
		скорость и угловое ускорение и их связь с	
		линейными характеристиками движения.	
		1.2. Кинематика материальной точки в движущейся	
		системе координат. Преобразования Галилея. Классический закон сложения скоростей.	
i	İ	TO GOOD TOOKIN OUROTT OF TORKOTININ OROPOUTEN.	

			r
		2. Динамика материальной точки	
		2.1. Взаимодействие материальных тел.	
		Инерциальные и неинерциальные системы	
		координат. Законы Ньютона. Масса. Сила. Урав	
		нения движения. Роль начальных условий.	
		Принцип относительности Галилея.	
		2.2. Фундаментальные взаимодействия в	
		природе. Силы в классической механике. Закон	
		всемирного тяготения. Свойства сил тяжести,	
		упругости, трения.	
		2.3. Движение материальной точки в	
		неинерциальной системе отсчета. Силы инерции.	
		3. Законы сохранения в механике.	
		4. Колебательное движение.	
		ч. половительное движение.	
2	Молекулярная физика и тер-	1. Основные представления	
	модинамика	молекулярно-кинетической теории.	
		2. Основы термодинамики 3. Реальные газы	
		J. I CAJIDHDIC I ASDI	
3	Электричество и магнетизм	Электростатика. Электрический заряд. Закон	
	Электростатика.	Кулона. Напряженность электрического поля.	
		Принцип суперпозиции. Потенциал. Разность	
		потенциалов.	
		Диэлектрик в электрическом поле. Диполь.	
		Дипольный момент. Вектор поляризации.	
		Электростатическая теорема Гаусса. Вектор элек-	
		трической индукции.	
		Уравнение Пуассона. Условия на границе	
		раздела двух сред. Проводник в электрическом	
		поле. Распределение зарядов на проводнике.	
		Электрическое поле внутри и вне проводника.	
4	Постоянный электрический	Постоянный электрический ток. Сила и плотность	
	ток.	тока. Закон Ома для участка цепи и замкнутого	
		контура. Сторонние силы. Электродвижущая сила.	
		Закон Ома в дифференциальной форме. Разветв-	
		ленные электрические цепи. Правила Кирхгофа.	
		Работа и мощность электрического тока. Закон	
5	Магнитное поле тока.	Магнитное поле тока. Законы Био-Савара-Лапласа	
		и Ампера. Сила Лоренца. Вектор магнитной	
		индукции. Поток вектора магнитной индукции	
		через замкнутую поверхность. Теорема о	
		циркуляции вектора индукции магнитного поля.	
		Магнитные свойства вещества. Магнитная	
		восприимчивость и магнитная проницаемость.	
6	Переходные процессы в це-	Переходные процессы в цепях с емкостью и	
	пях с емкостью и индуктив-	индуктивностью. Условие квазистационарности	
	ностью.	Закон Ома для цепей переменного тока с	
		омическим сопротивлением, емкостью и	
		индуктивностью. Реактивное сопротивление.	
		Мощность переменного тока. Колебательный	
7	Оптика	Обобщения теории Максвелла. Вихревое	
		электрическое поле. Ток смещения. Система	
		уравнений Максвелла в интегральной форме.	
		Электромагнитные волны. Волновое уравнение.	
		Скорость распространения электромагнитных	
		волн. Энергия и импульс электромагнитных	
<u> </u>		TROUTH OHOPENA MEMBER SHEKT POMAL HALL HOLD HOLD.	<u> </u>

8	Элементы квантовой теории.	Элементарная квантовая теория излучения света.	
	Основы атомной и ядерной	Атом Бора. Спонтанное и вынужденное излучение.	
	физики	Лазеры. Спектры излучения и поглощения света	
		для атомов и молекул. Опыты Резерфорда. По-	
		стулаты Бора. Опыт Франка и Герца.	
		Атомы водорода и щелочных металлов. Спин	
		электрона. Магнитный момент атома. Эффект	
		Зеемана. Принцип Паули. Периодическая система	
		элементов Д.И.Менделеева.	
		Уравнение Шредингера. Корпускулярно-волновой	
		дуализм: фотоны и микрочастицы. Волновая	
		функция и ее статистическое толкование.	
		Квантование энергии и момента импульса. Состав	
		ядра атома. Взаимодействие нуклонов в ядре.	
		Ядерные силы и модели атомного ядра.	
		Естественная и искусственная радиоактивность.	
		Ядерные реакции, деление ядер. Цепные реакции.	
		Использование ядерной энергии.	

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы (раздела)			Виды занятий (час	ов)	
п/п	дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
1	Введение.	2			6	8
2	I. Классическая механика	2	2		6	10
3	Молекулярная физика и тер- модинамика	4	2		6	12
4	III. Электричество и магнетизм Электростатика.	4	2		6	12
5	Постоянный электрический ток.	4	2		6	12
6	Магнитное поле тока.	4	2		6	12
7	Переходные процессы в цепях с емкостью и индуктивностью.	4	2		8	14
8	Оптика	4	2		8	14
9	Элементы квантовой теории. Основы атомной и ядерной физики	4	2		8	14
		32	16		60	108

14. Методические указания для обучающихся по освоению дисциплины

- изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств научной информации;
- подготовка к лабораторным занятиям, оформление отчетов. Данная программа реализуется с учетом следующих принципов: современной научной целесообразности, нелинейности, учебной и исследовательской автономии студентов.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необхо димых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Сивухин, Дмитрий Васильевич. Общий курс физики: [учебное пособие для студ. физ. специальностей вузов]: [в 5 т.] / Д.В. Сивухин. — Москва: ФИЗМАТЛИТ, 2014 Т. 3: Электричество. — Изд. 6-е, стер. — 2015. — 654 с.: ил. — Указ.: с.646-654.
2	Сивухин, Дмитрий Васильевич. Общий курс физики: [учебное пособие для студ. физ. специальностей вузов]: [в 5 т.] / Д.В. Сивухин. — Москва: ФИЗМАТЛИТ, 2012 — ISBN 5-9221-0229-X. Т. 4: Оптика. — Изд. 3-е, стер 2013. — 791 с Сивухин, Дмитрий Васильевич. Общий курс физики: [учебное пособие для студ. физ. специальностей вузов]: [в 5 т.] / Д.В. Сивухин. — Москва: ФИЗМАТЛИТ, 2014 — ISBN 978-5-9221-1513-1. Т. 1: Механика. — Изд. 6-е, стер. — 2014. —560 с.
3	Сивухин, Дмитрий Васильевич. Общий курс физики: [учебное пособие для студ. физ. специальностей вузов]: [в 5 т.] / Д.В. Сивухин. — Москва: ФИЗМАТЛИТ, 2014— ISBN 978-5-9221-1513-1. Т. 2: Термодинамика и молекулярная физика Изд. 6-е, стер 2014 543 с.

б) дополнительная литература:

№ п/п	Источник
4	Сивухин Д. В. Общий курс физики : учебное пособие для студ. физ. специально-стей вузов : в 5 т. / Д.В. Сивухин .— М. : ФИЗМАТЛИТ : Изд-во
,	МФТИ, 2002-Т.1: Механика .— Изд. 4-е, стер 2002 .— 560 с.
	Сивухин Д.В. Общий курс физики : Учебное пособие для студ. физ.
5	специальностей вузов / Д.В. Сивухин .— М. : Физматлит, 2003 Т. 2:
	Термодинамика и молекулярная физика .— 4-е изд., стер 2003 .— 575 с.
	Сивухин Д.В. Общий курс физики : учебное пособие для студ. физ.
6	специальностей вузов : в 5 т. / Д.В. Сивухин .— М. : ФИЗМАТЛИТ : Изд-во
	МФТИ, 2002 Т.3: Электричество .— Изд. 4-е, стер 2002 .— 654с.
	Сивухин Д. В. Общий курс физики : Учебное пособие для студ. физ.
7	специальностей вузов : В 5 т. / Д.В. Сивухин .— М. : ФИЗМАТЛИТ : Изд-во
	МФТИ, 2002 Т.4: Оптика .— 3-е изд., стер 2002 .— 791 с.
	Сивухин Д.В. Общий курс физики : учебное пособие для студ. физ.
8	специальностей вузов : в 5 т. / Д.В. Сивухин .— М. : ФИЗМАТЛИТ : Изд-во
	МФТИ, 2002 Т.5: Атомная и ядерная физика .— 2-е изд., стер 2002 .— 782
	C.
	Сивухин, Дмитрий Васильевич. Общий курс физики : учебное пособие для
9	студ. физ. спец. вузов : [в 5 т.] / Д.В. Сивухин .— М. : Наука : Физматлит,
	1979 [Т. 5]: Атомная и ядерная физика. Ч. 1. Атомная физика .— 1986 .—
	416 с. : ил Номер тома указан на корешке.
10	Задачи по общей физике : Учебное пособие для вузов / И. Е. Иродов .— 5-е
	изд., испр М. : Лаборатория Базовых Знаний, 2003 .— 431 с.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет):

1	V⊇ п/п	Источник
	15	www.lib.vsu.ru— ЗНБ ВГУ
	16	Курс общей физики, Том 1, Механика, Молекулярная физика, Савельев И.В., 1982

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению прак

№ п/п	Источник
11	Общая физика. Механика: [учебное пособие для студентов, обучающихся по программе бакалавриата по направлениям подготовки 010100 "Математика", 010200 "Математика и компьютерные науки", 230700 ""Прикладная информатика"] / С.С. Канторович, Д.В. Пермикин; Урал. федер. ун-т им. первого Президента России Б.Н. Ельцина. — Екатеринбург Издательство Уральского университета, 2012. — 83, [3] с:
12	Молекулярная физика: практикум для вузов: [для студ. физ. фак. 1 к. д/о и 2 к. в/о специальностей: 010701 (010400) - Физика, 010803 (014100) - Микроэлектроника и полупроводниковые приборы, 010801 (013800) - Радиофизика и электроника] / Воронеж. гос. ун-т; сост.: В.И. Кукуев, В.В. Чернышев, И.А. Попова. — Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2009 — ISBN . Ч. 3: Поверхностные свойства жидкостей. — 2012. — 11 с
13	Молекулярная физика: практикум для вузов: [для студ. физ. фак. 1 к. д/о и 2 к. в/о специальностей: 010701 (010400) - Физика, 010803 (014100) - Микроэлектроника и полупроводниковые приборы, 010801 (013800) - Радиофизика и электроника] / Воронеж. гос. ун-т; сост.: В.И. Кукуев, В.В. Чернышев, И.А. Попова. — Воронеж: Издательско-полиграфический центр Воронежского государственного университета. 200

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

https://edu.vsu.ru

18. Материально-техническое обеспечение дисциплины:

Для проведения лекционных и практических занятий используются аудитории, оснащенные специализированной мебелью.

Для самостоятельной работы используется класс с компьютерной техникой, оснащенной необходимым программным обеспечением, электронными учебными пособиями и законодательно – правовой нормативной поисковой системой, имеющей выход в глобальную сеть.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	I. Классическая механика	ОПК-1	ΟΠΚ-1.1 ΟΠΚ-1.2 ΟΠΚ-1.3	Решение задач. Домашние задпния
2.	Молекулярная физика и тер- модинамика	ОПК-1	ОПК-1.1 ОПК-1.2 ОПК-1.3	Решение задач. Домашние задпния
3	III. Электричество и магнетизм Электростатика.	ОПК-1	ОПК-1.1 ОПК-1.2 ОПК-1.3	Решение задач. Домашние задпния
4	Постоянный электрический ток.	ОПК-1	ΟΠΚ-1.1 ΟΠΚ-1.2 ΟΠΚ-1.3	Решение задач. Домашние задпния
5	Магнитное поле тока.	ОПК-1	ΟΠΚ-1.1 ΟΠΚ-1.2 ΟΠΚ-1.3	Решение задач. Домашние задпния
6	Переходные процессы в цепях с емкостью и индуктивностью.	ОПК-1	ОПК-1.1 ОПК-1.2 ОПК-1.3	Решение задач. Домашние задпния
7	Оптика	ОПК-1	ОПК-1.1 ОПК-1.2 ОПК-1.3	Решение задач. Домашние задпния
8	Элементы квантовой теории. Основы атомной и ядерной физики	ОПК-1	ОПК-1.1 ОПК-1.2 ОПК-1.3	Решение задач. Домашние задпния
Промежуточная аттестация форма контроля - зачет				Перечень вопросов Практическое задание

20. типовые оценочные средства и методические материалы, определяющие процедуры оценивания.

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Решение задач по разделам курса на практических занятиях, выполнение домашних заданий. Основной задачник - Задачи по общей физике : Учебное пособие для вузов / И. Е. Иродов .— 5-е изд., испр. - М. : Лаборатория Базовых Знаний, 2003 .— 431 с.

Вспомогательный: Волькенштейн В.С. Сборние задач по общему курсу физики. Учебное пособие. М. Наука, 1985. 384 с.

Технология проведения основана на проверке знаний основных законов физики в ходе выборочной проверки при решении задач на практических занятиях. Домашние работы выполняются учащимися самостоятельно с выборочной проверкой на практических занятиях.

Требования к выполнению заданий.

За выполнение домашнего задания ставится оценка «зачтено», если обучающийся правильно и в полном объеме решил все задания или выполнил все задания с некоторыми неточностями или обучающий выполнил половину из предложенных заданий правильно, остальные с существенными неточностями. В остальных случаях ставится оценка «незачтено».

20.2 Промежуточная аттестация.

Перечень вопросов зачету:

- 1 Место физики в системе наук о природе. Эксперимент и теория в физических исследованиях. Физические модели. Пространство и время как формы существования движущейся материи.
- 2 Кинематика прямолинейного движения.
- 3 Идеальный газ как модельная термодинамическая система. Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение Клапейрона-Менделеева.
- 4 Распределение молекул идеального газа по скоростям (распределение Максвелла) и в поле потенциальных сил (распределение Больцмана). Барометрическая формула.
- 5 Кинематика криволинейного движения.
- 6 Законы динамики. Свойства сил.
- 7 Принцип относительности. Движение в неинерциальных системах отсчета
- 8 Законы сохранения импульса, энергии, момента импульса.
- 9 Колебания свободные и вынужденные. Описание колебаний. Резонанс
- 10 Волны в упругих средах. Волновое уравнение. Уравнение монохроматической бегущей волны, основные характеристики волн.
- 11 Внутренняя энергия идеального газа. Работа термодинамической системы. Количество теплоты.
- 12 Теплоемкость. Закон равнораспределения энергии по степеням свободы молекул.
- 13 Первый закон термодинамики. Обратимые и необратимые процессы. Циклические процессы. Цикл Карно.
- 14 Коэффициент полезного действия тепловых машин. Второй закон термодинамики.
- 15 Энтропия и ее статистическая интерпретация. Возрастание энтропии при неравновесных процессах. Границы применимости второго закона термодинамики.
- 16 Силы молекулярного взаимодействия. Реальные газы. Уравнение Ван-дер-Ваальса. Переход из газообразного состояния в жидкое. Критические параметры. Эффект Джоуля-Томсона.
- 17 Электростатика. Электрический заряд. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Потенциал. Разность потенциалов. Диэлектрик в электрическом поле. Диполь. Дипольный момент. Вектор поляризации. Электростатическая теорема Гаусса.
- 18 Постоянный электрический ток и его законы
- 19 Магнитное поле тока. Законы Био-Савара-Лапласа и Ампера. Сила Лоренца. Вектор магнитной индукции. Поток вектора магнитной индукции через замкнутую поверхность.
- 20 Переменный электрический ток и его характеристики. Индуктивность и емкость в цепи переменного тока.
- 21 Электромагнитные волны и их характеристики.
- 22 Интерференция света и ее законы.
- 23 Дифракция света и ее законы.
- 24 Корпускулярно-волновые свойства частиц микромира. Атом БораУравнение Шредингера. Волновая функция и ее статистическое толкование. Квантование энергии и момента импульса.
- 25 Состав ядра атома. Взаимодействие нуклонов в ядре. Ядерные силы и модели атомного ядра. Естественная и искусственная радиоактивность.
- 26 Ядерные реакции, деление ядер. Цепные реакции. Использование ядерной энергии.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и практическое задание, позволяющее оценить степень сформированности умений и навыков.

Пример контрольно0измерительного материала.

Контрольно-измерительный материал №1.

- 1. Законы сохранения импульса, энергии, момента импульса.
- 2. Магнитное поле тока. Законы Био-Савара-Лапласа и Ампера. Сила Лоренца. Вектор магнитной индукции. Поток вектора магнитной индукции через замкнутую поверхность.

При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.

Требования к выполнению заданий (или шкалы и критерии оценивания)

Критерии оценивания компетенций	Уровень сформиро-ван ности компетенций	Шкала оценок
Обучающийся в полной мере владеет теоретическими основами дисциплины, способен иллюстрировать ответ примерами, фактами, применять теоретические знания для решения практических задач в области программирования, может при этом допускать незначительные ошибки.	Повышен- ный и ба- зовый уро- вень	зачтено
Обучающийся не владеет теоретическими основами дисциплины, не способен применить их на практике, допускает ошибки при написании программ.	Базовый уровень	Не зачтено