МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

___.__.2022_г.

Заведующий кафедрой

____Задорожний В.Г._

Системного анализа и управления_

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ
Б1.0.20 Методы оптимизации
1. Код и наименование направления подготовки/специальности:
02.03.03 Математическое обеспечение и администрирование информационных систем_
2. Профиль подготовки/специализация:
Проектирование и разработка информационных систем
3. Квалификация (степень) выпускника: бакалавр
4. Форма обучения: очная
5. Кафедра, отвечающая за реализацию дисциплины:
Системного анализа и управления
6. Составители программы: Задорожний Владимир Григорьевич доктор физ. мат. наук, профессор
7. Рекомендована: Научно-методическим советом факультета прикладной математики, информатики и механики НМС протокол №8 от 15.04.2022 (наименование рекомендующей структуры, дата, номер протокола,
отметки о продлении вносятся вручную)
8. Учебный год:_2022/2023 Семестр(ы): 6

9. Цели и задачи учебной дисциплины:

Целями освоения учебной дисциплины являются:

- изучение основ теории экстремальных задач, получение необходимых концептуальных представлений, достаточных для понимания, оценки существующих алгоритмов решения оптимизационных задач и, если необходимо, разработки новых методов и подходов решения новых типов таких задач для формирования умений и навыков по использованию фундаментальных знаний, полученных в области математических и естественных наук, в профессиональной деятельности.

Задачи учебной дисциплины:

- дать студентам общее представление о прикладных задачах оптимизации;
- ознакомить с основными теоретическими фактами;
- изучить основные классы методов;
- обучить использованию методов решения прикладных задач оптимизации;
- сформировать базовые знания и навыки решения типовых задач с учетом основных понятий и общих закономерностей, сформулированных в рамках базовых дисциплин математики, информатики и естественных наук;
- обучить применению системного подхода и математическим методам в формализации решения прикладных задач;
- сформировать навыки выбора современных математических инструментальных средств для обработки исследуемых явлений в соответствии с поставленной задачей, анализа результатов расчетов и интерпретирует полученных результатов.
- **10. Место учебной дисциплины в структуре ООП:** учебная дисциплина относится к обязательной части Блока 1. Требуется уверенное владение техникой дифференцирования и интегрирования. Требуется овладение теории дифференциальных уравнений и численными методами.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной

программы (компетенциями выпускников):

Код	Название компе-	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
	тенции			
ОПК -1	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	ОПК- 1.1 ОПК- 1.2	Решает типовые задачи с учетом основных понятий и общих закономерностей, сформулированных в рамках базовых дисциплин математики, информатики и естественных наук. Применяет системный подход и математические методы для формализации решения прикладных задач. Осуществляет выбор современных математических инструментальных средств для обработки исследуемых явлений в соответствии с по-	знать: Основные типы экстремальных задач. Основные необходимые и достаточные условия экстремума уметь: Находить точки экстремума функций нескольких переменных, функционалов и задач оптимального управления. владеть (иметь навык(и)): Приемами формализации экстремальных задач, численными и аналитическими методами решения задач оптимизации.

•	
	ставленной зада-
	чей, анализирует
	результаты расче-
	тов и интерпрети-
	рует полученные
	результаты.

12. Объем дисциплины в зачетных единицах/час.(в соответствии с учебным планом) — _3__/_108____.

Форма промежуточной аттестации зачет

13. Виды учебной работы

Вид учебной работы		Трудоемкость (часы)				
		Всего	В том числе в интерактивной форме	По семестрам		
				6	№ сем.	
Аудиторные занятия		64		64		
в том числе:	лекции	32		32		
практические		32		32		
лабораторные						
самостоя	ятельная работа	44		44		
Итого:		108		108		
форма промежуточной аттестации		Зачет		6		

13.1. Содержание дисциплины

п/п			Реализация				
			раздела дис-				
	Наименование раздела	Сопоружние посполо писимплини	циплины с по-				
	дисциплины	Содержание раздела дисциплины	мощью он-				
			лайн-курса,				
			ЭУМК *				
		1. Лекции					
1.1	Оптимизация функций од-	Методы деления отрезка пополам и золотого сече-	Методы опти-				
	ной переменной	ния	мизации(бак)				
1.2		Симплексный метод. Необходимые условия мини-	Методы опти-				
	Оптимизация функций	мума. Теоремы отделимости. Теорема Куна-Такке-	мизации(бак)				
	нескольких переменных	ра. Градиентные методы. Метод штрафных функ-					
		ций.					
1.3		Необходимые условия минимума. Условия транс-	Методы опти-				
		версальности. Необходимые и достаточные усло-	мизации(бак)				
	2000000 0000000	вия слабого и сильного минимума в задачах вариа-					
	Задачи оптимального	ционного исчисления. Метод градиентного спуска					
	управления	в задачах оптимального управления Принцип опти-					
		мальности Беллмана. Решение задач с помощью					
		уравнения Беллмана. Комбинаторные задачи.					
	2. Практические занятия						
2.1	Оптимизация функций од-	Методы деления отрезка пополам и золотого сече-	Методы опти-				
	ной переменной	ния	мизации(бак)				
2.2		Симплексный метод. Необходимые условия мини-	Методы опти-				
	Оптимизация функций	мума. Теоремы отделимости. Теорема Куна-Такке-	мизации(бак)				
	нескольких переменных	ра. Градиентные методы. Метод штрафных функ-					
		ций.					
2.3		Необходимые условия минимума. Условия транс-	Методы опти-				
		версальности. Необходимые и достаточные усло-	мизации(бак)				
	Задачи оптимального	вия слабого и сильного минимума в задачах вариа-					
	управления	ционного исчисления. Метод градиентного спуска					
	yripabilolivii	в задачах оптимального управления Принцип опти-					
		мальности Беллмана. Решение задач с помощью					
		тальности волимана. Гошение зада го помощью					

уравнения Беллмана. Комбинаторные задачи.	
---	--

13.2. Темы (разделы) дисциплины и виды занятий

Nº	№ Наименование темы		Виды занятий (часов)					
п/п	паименование темы (раздела) дисциплины	Лек- ции	Практические	Лабораторные	Самостоятельная работа	Всего		
1	Оптимизация функций одной переменной	4	4		8	16		
2	Оптимизация функций нескольких переменных	14	14		20	48		
3	Задачи оптимального управ- ления	14	14		16	44		
	Итого:	32	32		44	108		

14. Методические указания для обучающихся по освоению дисциплины

Курс предполагает отведение большого числа разделов на самостоятельную работу студентов. Приведенные источники позволяют в полной мере самостоятельно изучить студентами данные разделы.

Материал по каждой теме излагается последовательно с использованием ранее введенных определений, обозначений и доказательств. Необходима постоянная самостоятельная проработка и усвоение изложенного на занятиях материала.

Желателен просмотр материала по данной учебной дисциплине с опережением лекций с использованием рекомендуемой в данной учебной программе литературы.

Приветствуются вопросы студентов по теме учебной дисциплины и смежным вопросам в ходе аудиторных занятий.

При использовании дистанционных образовательных технологий и электронного обучения выполнять все указания преподавателей по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видовисточников)

۵۱	OCHODING.	литература:
aı	осповпал	JIMI CDA I VDA.

№ п/п	Источник
1	Аттетков, А. В. Введение в методы оптимизации : учеб. пособие/ А. В. Аттетков, В. С. Зарубин, А. Н. Канатников Москва : Финансы и статистика, 2011 272 с ISBN 978-5-279-03251-8 Текст : электронный // ЭБС "Консультант студента" : [сайт] URL : https://www.studentlibrary.ru/book/ISBN9785279032518.html (дата обращения: 15.02.2021) Режим доступа : по подписке.
2	Пантелеев, А.В. Методы оптимизации в примерах и задачах : учебное пособие / А.В. Пантелеев, Т.А. Летова. — 4-е изд., испр. — Санкт-Петербург : Лань, 2021. — 512 с. — ISBN 978-5-8114-1887-9. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/168850 (дата обращения: 15.12.2021). — Режим доступа: для авториз. пользователей.

б) дополнительная литература:

№ п/п	Источник
3	Задорожний В.Г. Методы оптимизации: пособие для студентов / В.Г. Задорожний,
	Е.Л. Ульянова. – Воронеж : Изд-во Воронеж, ВГУ, 2004. – 31 с.
4	Алексеев В.М. Сборник задач по оптимизации/ В.М. Алексеев, Э.М. Галеев, В.М. Тихо-
7	миров. М.: Физматлит, 2007. – 255 с.
5	АлююшинВ.М., КолобашкинаЛ.В. Методы оптимального управления. Уч. Пособ. МИФИ,
3	2020, 176 с. – Электрон. Дан. – СПб, , Лань.
6	Горелик, В.А. Исследование операций и методы оптимизации: Учебник / В.А. Горелик
6	M.: Academia, 2018 384 c.

в)информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Ресурс
1	Васильев Ф.П. Методы оптимизации. Кн.1 [Электронный ресурс] : . — Электрон. дан. — М. : МЦНМО (Московский центр непрерывного математического образования), 2011.

	— 620 с. — Режим доступа: <u>http://e.lanbook.com/books/element.php?pl1_id=9304</u>
	Васильев Ф.П. Методы оптимизации. Кн.2 [Электронный ресурс] : . — Электрон. Дан.
2	— М.: МЦНМО (Московский центр непрерывного математического образования), 2011.
	— 433 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=9305 —
3	Электронный каталог Научной библиотеки Воронежского государственного университета.
3	– Режим доступа: https://lib.vsu.ru/
4	Методы оптимизации(бак)/ В.Г. Задорожний. — Образовательный портал «Электрон-
4	ный университет ВГУ». — Режим доступа: <u>https://edu.moodle.ru</u>

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

٠.	Tookax (Komingonishis) padam a op.)						
	№ п/п	Источник					
	1	Задорожний В.Г. Методы оптимизации: пособие для студентов / В.Г. Задорожний, Е.Л. Ульянова. – Воронеж: Изд-во Воронеж, ВГУ, 2004. – 31 с.					
	2	Белоусова Е.П., Коструб И.Д. Методы оптимизации http://www.lib.vsu.ru/elib/texts/method/vsu/nov05111.pdf					

ный университет ВГУ». — Режим доступа: https://edu.moodle.ru

3

Методы оптимизации(бак)/ В.Г. Задорожний. — Образовательный портал «Электрон-

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий. Для организации занятий рекомендован онлайн-курс «Методы оптимизации(бак)», размещенный на платформе Электронного университета ВГУ (LMS moodle), а также Интернет-ресурсы, приведенные в п.15в.

18. Материально-техническое обеспечение дисциплины: Учебная аудитория для проведения лекций и практических занятий (394018, г. Воронеж, площадь Университетская, д. 1, пом. 226, 227, 319, 321, 323, 329, 428, 430, 433, 435): специализированная мебель, доска (маркерная или меловая).

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен- ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства	
1.	Оптимизация функций одной переменной	ОПК-1	ОПК-1.1, ОПК- 1.2, ОПК-1.3	Собеседования по темам	
2.	Оптимизация функций нескольких переменных	ОПК-1,	ОПК-1.1, ОПК- 1.2, ОПК-1.3	Собеседования по темам	
3	Задачи оптимального управления	ОПК-1,	ОПК-1.1, ОПК- 1.2, ОПК-1.3	Собеседования по темам	
	Промежуточна форма контроля	Перечень вопросов см. ниже.			

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: **Контрольные работы**

Перечень заданий для контрольных работ

Тема: Задачи оптимизации и их формализация. Методы оптимизации функций одной переменной. Элементы линейного программирования и нелинейного программирования. Методы минимизации функций нескольких переменных

Вариант 1

- 1. Решить задачу классическим методом: $J(u) = u^3(u^2 1) \to \inf, u \in [1; 2].$
- 2. Привести задачу к каноническому виду:

$$J(u) = 2u_1 - 3u_2 + u_3 \to \inf,$$

$$\begin{cases} u_1 + 2u_2 - u_3 + u_4 \le 1, \\ u_1 - u_2 + 2u_4 \ge 1, \\ -u_1 + 2u_2 + u_3 = -4, \\ u_1 \ge 0, u_2 \ge 0, u_4 \ge 0. \end{cases}$$

3. Составить математическую модель двойственной задачи и по её решению найти оптимальное решение исходной задачи:

$$J(u) = -7u_1 - 8u_2 - 12u_3 \to \inf,$$

$$\begin{cases} 2u_1 + u_2 + 3u_3 \le -1, 5, \\ u_1 + 2u_2 + 4u_3 \le -7, \\ u_1 \ge 0, \ u_2 \ge 0, \ u_3 \ge 0. \end{cases}$$

- 4. Решить задачу: $J(u) = u_1u_2 + 50/u_1 + 20/u_2 \rightarrow \text{ extr.}$
- 5. Найти условный экстремум функции нескольких переменных в задаче с ограничениями типа равенств: $J(u)=u_1u_2+u_2u_3\to \,\,{\rm extr},\,\,u_1-u_2=2,\,\,u_2+2u_3=4$.
- 6. Составить функцию Лагранжа и выписать систему для нахождения условного экстремума в задаче с ограничениями типа равенств и неравенств: $J(u) = u_1 u_2 u_3 \rightarrow \text{extr}, \ u_1^2 + u_2^2 + u_3^2 = 1, \ u_1 + u_2 + u_3 \leq 0.$

Тема: Элементы выпуклого анализа. Задачи вариационного исчисления. **Вариант 1**

1. Дать определение: а) выпуклой функции; б) сильного локального минимума.

2. Решить задачу
$$\int_{0}^{1} (\ddot{u}^2 - 24tu)dt \rightarrow \inf, u(0) = \dot{u}(1) = 0, u(1) = 1/5, \dot{u}(1) = 1.$$
3. Решить задачу $\int_{0}^{1} (u - \dot{u}^2)dt \rightarrow extr, u(0) = u(1) = 0.$

Для оценивания результатов обучения (контрольная работа) используется 4-балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Оценка «отлично» выставляется, если обучающийся показывает полное знание программного материала; демонстрирует способность применять теоретические знания для анализа практических ситуаций, делать правильные выводы; выполнил все задания и задачи полностью без ошибок и недочетов; строго соблюдает требования при оформлении работы; подтверждает полное освоение компетенций, предусмотренных программой.

Оценка «хорошо» выставляется, если обучающийся показывает полное знание программного материала; правильно применяет теоретические положения к оценке практических ситуаций; выполнил все задания и задачи полностью, но при наличии в их решении не более одной негрубой ошибки и одного недочета, не более трех недочетов; строго соблюдает требования при оформлении работы; демонстрирует хороший уровень освоения материала и в целом подтверждает освоение компетенций, предусмотренных программой.

Оценка «удовлетворительно» выставляется, если обучающийся показывает знание основного материала в объеме, необходимом для предстоящей профессиональной деятельности; не в полной мере демонстрирует способность применять теоретические знания для анализа практических ситуаций; выполнил не менее 2/3 всех предложенных заданий и задач или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов; допускает незначительные ошибки при оформлении работы; подтверждает освоение компетенций, предусмотренных программой на минимально допустимом уровне.

Оценка «неудовлетворительно» выставляется, если обучающийся имеет существенные пробелы в знаниях основного учебного материала по дисциплине; если число ошибок и недочетов в работе превысило норму для оценки 3 или обучающийся выполнил правильно менее 2/3 всех заданий и задач; допускает грубые ошибки при оформлении работы; не подтверждает освоение компетенций, предусмотренных программой.

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Перечень вопросов к экзамену и порядок формирования КИМ

- 1. Транспортная задача.
- 2. Задача Эвклида.
- 3. Задача о брахистохроне
- 4. Задача Дидоны,
- 5. Задача оптимального быстродействия.
- Классический метод.
- 7. Метод деления отрезка пополам.
- 8. Метод золотого сечения.
- 9. Метод парабол.
- Классический метод для задач на безусловный экстремум (функции нескольких переменных).
- 11. Постановка задачи на условный экстремум. Метод множителей Лагранжа.
- 12. Достаточное условие условного экстремума.
- 13. Пример Пеано.
- 14. Выпуклые множества и их свойства.
- 15. Проекция точки на выпуклое множество.
- 16. Теорема о разделяющей гиперплоскости.
- 17. Теорема об опорной гиперплоскости.
- Представление выпуклого множества через его крайние точки.
- Выпуклые функции многих переменных. Критерий выпуклости дифференцируемой функции.
- 20. Критерий выпуклости дважды непрерывно дифференцируемой функции.
- 21. Задача о максимуме выпуклой функции на выпуклом множестве.
- 22. Теорема Куна Таккера.
- 23. Седловая точка функции Лагранжа. Другая формулировка теоремы Куна Таккера.
- 24. Двойственная задача нелинейного программирования.
- 25. Связь двойственных задач нелинейного программирования.
- Общая постановка задачи линейного программирования. Канонический вид задачи линейного программирования.
- 27. Геометрический метод решения задачи линейного программирования (можно на примере).
- 28. Крайние точки. Необходимое и достаточное условие для того чтобы точка была крайней.
- 29. Симплексный метод (на простейшем примере).
- 30. М-метод.
- 31. Градиентный метод.
- 32. Метод Ньютона.
- 33. Метод штрафных функций.
- 34. Пространства функций. Понятие слабого и сильного минимума.
- 35. Дифференциал функционала. Необходимое условие минимума функционала.
- 36. Лемма Лагранжа. Уравнение Эйлера и его использование.
- 37. Общая постановка задачи оптимального управления.
- 38. Задача о запуске спутника.
- 39. Необходимые условия в задаче оптимального управления.
- 40. Принцип максимума Понтрягина.
- 41. Пример решения задачи оптимального управления.
- 42. Условие Лежандра. Условие Якоби.
- 43. Условие Вейерштрасса.
- 44. Необходимые условия минимума функционала вариационного исчисления.
- 45. Достаточные условия слабого минимума.
- 46. Достаточные условия сильного минимума.
- 47. Первый интеграл Гамильтоновой системы.
- 48. Задачи с интегральными ограничениями.
- 49. Комбинаторные задачи.
- Сведение задачи оптимального управления к задаче минимизации функции нескольких переменных.

Контрольно-измерительный материал №_1_

- 1. Задача о брахистохроне.
- 2. Теорема Куна-Таккера.
- 3. Выписать уравнение Беллмана для задачи:

$$\int_{0}^{1} (\sin^{2}(x(t)u(t)) + u^{2}(t))dt \rightarrow \min$$

4.

Контрольно-измерительный материал №2___

- 1. Теорема об опорной гиперплоскости.
- 2. Условия трансверсальности.
- 3. Выписать условие Лежандра для ПЗВИ

$$\int_{0}^{1} (x^{2} - \frac{1}{2}x'^{2})dt$$

$$x(0) = 0, \quad x(1) = 1.$$

Описание технологии проведения. Средство контроля, организованное как специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Требования к выполнению заданий (или шкалы и критерии оценивания)

Для оценивания результатов обучения на зачете используются следующие показатели:

- 1) знание основных определений, примеров и формулировок теорем;
- 2) умение связывать теорию с практикой;
- 3) умение решать задачи вычислительного характера;
- 4) умение обосновывать (доказывать) основные факты теории.

Для оценивания результатов обучения на зачете с оценкой используется 4-балльная шкала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Критерии оценивания компетенций	Уровень сформиро- ванности компетенций	Шкала оценок
Полное соответствие ответа обучающегося на контрольно- измерительный материал всем перечисленным критериям	Повышенный уровень	Отлично
Ответ на контрольно-измерительный материал соответ- ствует первым трем критериям.	Базовый уро- вень	Хорошо
Ответ обучающегося на контрольно-измерительный мате-	Пороговый	Удовлетвори-
риал соответствует первым двум критериям.	уровень	тельно
Ответ не соответствует первым двум критериям.	_	Неудовлетвори- тельно