МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой математического моделирования

М.Ш. Бурлуцкая 26.06.2022 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.21 Математическое моделирование

- 1. Код и наименование направления подготовки: 01.03.04 Прикладная математика
- **2.** Профиль подготовки: Применение математических методов к решению инженерных и экономических задач
- 3. Квалификация выпускника: бакалавр
- 4. Форма обучения: Очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

Кафедра математического моделирования

- 6. Составитель программы: Костин Владимир Алексеевич, д.ф.-м.н., профессор
- **7. Рекомендована:** Научно-методическим советом математического факультета, протокол № 0500-03 от 24.03.2022

9. Цели и задачи учебной дисциплины:

Изучение основных понятий, приемов и методов математического моделирования и рассмотрение современных технологий построения и исследования математических моделей различных сложных технических систем (в том числе и с участием человека), выработать практические навыки декомпозиции, абстрагирования при решении задач в различных областях профессиональной деятельности.

10. Место учебной дисциплины в структуре ООП: Блок 1, базовая часть.

Основой для освоения учебной дисциплины «Математическое моделирование» являются знание и умение студентов в области вузовских курсов: математического анализа, обыкновенных и в частных производных дифференциальных уравнений, теории вероятностей и математической статистики, физики, а также соответствующих знаний из школьных курсов химии, биологии, астрономии.

11. Планируемые результаты обучения по дисциплине (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Иол	Цеевение	Коли	Миликоторы	Пполименто
Код	Название	Коды	Индикаторы	Планируемые
0016	компетенции	001	05	результаты обучения
ОПК-	Способен	ОПК-	Обладает базовыми	Знать: как решать
1	применять	1.1	знаниями, полученными в	стандартные задачи
	знание		области математических и	профессиональной
	фундаменталь		(или) естественных наук	деятельности.
	ной			Уметь: работать с
	математики и	ОПК-	Умеет использовать базовые	базовыми знаниями
	естественно-	1.2	знания в области	для построения
	научных		математических и (или)	математических
	дисциплин при		естественных наук в	моделей.
	решении задач		профессиональной	Владеть:
	в области		деятельности	способностью
	естественных			использовать
	наук и	ОПК-	Имеет навыки выбора	современные
	инженерной	1.3	методов решения задач	математические
	практике		профессиональной	методы.
			деятельности на основе	
			теоретических знаний.	
			•	
ОП	Способен	ОПК-	Владеет навыками	Знать:
K-2	обоснованно	2.1	использования	математические
	выбирать,		математических методов и	методы для
	дорабатывать		моделей для решения	построения и
	и применять		исследовательских задач	исследования
	для решения		тоотодоватотвония сада:	математических
	исследователь	опк-	Осуществляет проверку	моделей различных
	ских и	2.2	адекватности математических	сложных технических
	проектных		моделей.	систем.
	задач			Уметь: проверять на
	математически	ОПК-	Анализирует результаты и	адекватность
	е методы и	2.3	оценивает надежность и	построенные
		2.5		математические
	модели,		качество функционирования	MaicMainAcckne

осуществлять	систем.	модели.
проверку		Владеть: навыками
адекватности		анализа полученных
моделей,		решений
анализировать		математических
результаты,		моделей различных
оценивать		экономических и
надежность и		инженерных задач.
качество		
функциониров		
ания		

12 Объем дисциплины в зачетных единицах/часах — 3 / 108.

Форма промежуточной аттестации – курсовая работа; зачет.

13. Виды учебной работы:

D		Трудоемкость (часы)			
			По семестрам		
вид учеоно	Вид учебной работы		6 семестр		
Аудит	орные занятия	48	48		
в том числе:	лекции	16	16		
	практические	32	32		
	лабораторные	0	0		
Самостоятельная ра	абота	60	60		
Форма промежуточн (зачет – 0 час.;)	ной аттестации				
	Итого:	108	108		

13.1. Содержание дисциплины:

Nº	Наименование				
п/п	раздела	Содержание раздела дисциплины			
	дисциплины				
		1. Лекции			
1.1	Модели механики и	1. Математическая обработка экспериментальных данных. Метод			
	модели сплошных	наименьших квадратов.			
	сред	2. Сплайн функции.			
		3. Модели общей механики сплошных сред. Теория деформации.			
		4. Модели Чебышева.			
1.2	Модели газовой	1. Уравнение газовой динамики.			
	динамики,	2. Уравнение гидродинамики.			
	гидродинамики,	3. Уравнение акустики.			
	акустики	4. Разностные методы решения задач механики, жидкости и газа.			
1.3	Стохастические	1. Стохастические модели.			
	модели	2. Прямое и обратное уравнение Колмогорова.			
		3. Полугруппа линейных ограниченных операторов.			
		4. Производящий оператор случайного марковского процесса.			
1.4	Статические модели	1. Модель Леонтьева «затраты – выпуск».			
	в экономике	2. Методы принятия решений в условиях нечеткой и неточной информации.			

1.5	Динамические модели в экономике	 Модель экономического роста Солоу. Модель фон Неймана. Продуктивность и неразложимость. Равновесие в модели динамического межотраслевого баланса.
модели 2. Классическая г		 Экологическое введение. Классическая модель Вольтерра. Стабилизация системы «хищник – жертва».
		2. Практические занятия
2.1	Модели механики и модели сплошных сред	Математическая обработка экспериментальных данных. Метод наименьших квадратов. Сплайн функции. Модели общей механики сплошных сред. Теория деформации. Модели Чебышева.
2.2	Модели газовой динамики, гидродинамики, акустики	 Уравнение газовой динамики. Уравнение гидродинамики. Уравнение акустики. Разностные методы решения задач механики, жидкости и газа.
2.3	Стохастические модели	Стохастические модели. Прямое и обратное уравнение Колмогорова. Полугруппа линейных ограниченных операторов. Производящий оператор случайного марковского процесса.
2.4	Статические модели в экономике	1. Модель Леонтьева «затраты – выпуск». 2. Методы принятия решений в условиях нечеткой и неточной информации.
2.5	Динамические модели в экономике	 Модель экономического роста Солоу. Модель фон Неймана. Продуктивность и неразложимость. Равновесие в модели динамического межотраслевого баланса.
2.6	Математические модели соперничества	 Экологическое введение. Классическая модель Вольтерра. Стабилизация системы «хищник – жертва».

13.2 Темы (разделы) дисциплины и виды занятий:

No	№ Наименование темы		Виды занятий (часов)					
п/п	(раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего		
1	Модели механики и модели сплошных сред	2	5	0	10	17		
2	Модели газовой динамики, гидродинамики, акустики	2	5	0	10	17		
3	Стохастические модели	2	5	0	10	17		
4	Статические модели в экономике	3	5	0	10	18		
5	Динамические модели в экономике	3	6	0	10	19		
6	Математические модели соперничества	4	6	0	10	20		

Итого:	16	32	0	60	108
--------	----	----	---	----	-----

14. Методические указания для обучающихся по освоению дисциплины

При изучении курса «Математическое моделирование», обучающимся следует внимательно слушать и тщательно конспектировать материал, излагаемый на аудиторных занятиях. Для его понимания и качественного усвоения рекомендуется следующая последовательность действий:

- 1. После каждой лекции студентам рекомендуется подробно разобрать прочитанный теоретический материал, выучить все определения и формулировки теорем, разобрать примеры, решенные на лекции. Перед следующей лекцией обязательно повторить материал предыдущей лекции.
- 2. Перед практическим занятием обязательно повторить лекционный материал. После практического занятия еще раз разобрать решенные на этом занятии примеры, после чего приступить к выполнению домашнего задания. Если при решении примеров, заданных на дом, возникнут вопросы, обязательно задать на следующем практическом занятии или в присутственный час преподавателю.
- 3. При подготовке к практическим занятиям повторить основные понятия по темам, изучить примеры. Решая задачи, предварительно понять, какой теоретический материал нужно использовать. Наметить план решения, попробовать на его основе решить практические задачи.

При подготовке к занятиям всех видов рекомендуется пользоваться интернеткурсом на образовательной платформе «Электронный университет ВГУ»: https://edu.vsu.ru/course/view.php?id=9763.

Освоение дисциплины предполагает обязательное посещение обучающимися аудиторных занятий и активную работу на них, но и самостоятельную учебную деятельность, на которую отводится 60 часов. Самостоятельная учебная деятельность студентов по дисциплине «Математическое моделирование» предполагает выполнение следующих заданий:

- 1) самостоятельное изучение учебных материалов по разделам с использованием основной и дополнительной литературы, информационно-справочных и поисковых систем:
- 2) подготовку к текущим аттестациям выполнение практических заданий по поиску необходимых для работы в аудитории материалов в Интернете.

Особое внимание обучающихся направляется на построение практических линейных и нелинейных кривых. Причем приоритетной здесь является работа с общедоступными современными пакетами программ.

Все выполняемые студентами самостоятельно практические задания подлежат последующей проверке преподавателем.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Самарский А.А. Математическое моделирование. Идеи. Методы. Примеры / А.А. Самарский, А.П. Михайлов .— Изд. 2-е, испр. — М. : Физматлит, 2002 .— 316, [4] с. : ил. — ISBN 5-9221-0120.
2	Чуличков А.И. Математические методы нелинейной динамики / А.И. Чуличков .— Изд. 2-е, испр. — М. : Физматлит, 2003 .— 294 с. : ил. — ISBN 5-9221-0366-0.

№ п/п	Источник
	Колемаев В.А. Математическая экономика : учебник для студ. вузов / В.А. Колемаев .— 3-е стер. изд. — М. : ЮНИТИ, 2005 .— 399 с. : ил., табл. — ISBN 5-238-00794.

в) информационные электронно-образовательные ресурсы:

№ п/п	Ресурс			
4	Википедия: свободная энциклопедия : (<u>http://ru.wikipedia.org</u>) .			
5	Поисковые системы Google, Yandex, Rambler.			
6	ЭБС «Университетская библиотека онлайн»: образовательный ресурс: <url:http: www.biblioclub.ru=""> .</url:http:>			
7	Электронный каталог Научной библиотеки Воронежского государственного университета : (http:// <u>www.lib.vsu.ru/</u>) .			
8	Электронный курс на образовательной платформе «Электронный университет ВГУ» : https://edu.vsu.ru/course/view.php?id=9763 https://edu.vsu.ru/course/view.php?id=16259 .			

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Чуличков А.И. Математические методы нелинейной динамики / А.И. Чуличков .— Изд. 2-е, испр. — М. : Физматлит, 2003 .— 294 с. : ил. — ISBN 5-9221-0366-0.
2	П ВГУ 2.0.16 – 2019 Положение об организации самостоятельной работы обучающихся в Воронежском государственном университете : (http://www.tqm.vsu.ru/index.php?id=112&doc=docu_7298) .

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости):

Стандартное современное программное обеспечение персонального компьютера, позволяющее, в том числе, проводить статистическую обработку больших массивов данных, создавать документы для размещения в Интернет, эффективно использовать поисковые ресурсы глобальных сетей.

Дисциплина может реализовываться с применением дистанционных образовательных технологий, например, на платформе «Электронный университет ВГУ».

Перечень необходимого программного обеспечения: Microsoft Windows Server 2008, Microsoft Windows 10, LibreOffice 6, браузер Mozilla Firefox, Maxima.

18. Материально-техническое обеспечение дисциплины:

Специализированная мебель.

Для проведения лекционных и практических занятий используются аудитории, соответствующие санитарно-техническим нормам и противопожарным правилам.

Для самостоятельной работы используется класс с компьютерной техникой, оснащенный необходимым программным обеспечением и электронными учебными пособиями и законодательно-правовой и нормативной поисковой системой, имеющий выход в глобальную сеть.

При реализации дисциплины с использованием дистанционного образования возможны дополнения материально-технического обеспечения дисциплины.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

	T	1	1	
Nº п/п	Наименование раздела дисциплины (модуля)	Компетенц ия(и)	Индикатор(ы) достижения компетенци и	Оценочные средства
1.	Модели механики и модели сплошных сред	ОПК-1	ОПК-1.1 ОПК-1.2 ОПК-1.3	Контрольная работа №1
2.	Модели газовой динамики, гидродинамики, акустики	ОПК-1	ОПК-1.1 ОПК-1.2 ОПК-1.3	Контрольная работа №1
3.	Стохастические модели	ОПК-2	ОПК-2.1 ОПК-2.2	Контрольная работа №2
4.	Статические модели в экономике	ОПК-2	ОПК-2.1 ОПК-2.2 ОПК-2.3	Контрольная работа №2
5.	Динамические модели в экономике	ОПК-2	ОПК-2.1 ОПК-2.2 ОПК-2.3	Контрольная работа №3
6.	Математические модели соперничества	ОПК-1 ОПК-2	ОПК-1.1 ОПК-1.2 ОПК-2.1 ОПК-2.2 ОПК-2.3	Контрольная работа №3
	Промежуточна форма конт		Перечень вопросов зачета	

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Контроль успеваемости по дисциплине осуществляется с помощью проверки контрольных работ и дополнительных устных вопросов по теме контрольной работы.

Контрольная работа № 1

- 1. Математическая обработка экспериментальных данных. Метод наименьших квадратов.
- 2. Модели общей механики сплошных сред. Теория деформации.
- 3. Уравнение газовой динамики.
- 4. Уравнение гидродинамики.

Контрольная работа № 2:

- 1. Стохастические модели.
- 2. Модель Леонтьева «затраты выпуск».
- 3. Методы принятия решений в условиях нечеткой и неточной информации.

Контрольная работа № 3:

- 1. Модель экономического роста Солоу.
- 2. Модель фон Неймана.
- 3. Классическая модель Вольтерра.
- 4. Стабилизация системы «хищник жертва».

Критерии оценки выполнения контрольной работы:

- оценка «зачтено» ставится, если обучающийся продемонстрировал знание необходимого для выполнения контрольной работы теоретического материала, показал владение практическими навыками и умение решать конкретную задачу в соответствии с поставленной целью. При этом допускается возможность, что были допущены незначительные неточности теоретического или практического плана;
- оценка «не зачтено» ставится, если обучающийся допустил существенную ошибку, связанную с незнанием теории или отсутствием необходимых умений и навыков для выполнения конкретной контрольной работы.

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется в форме собеседования по билетам с помощью ниже приведенных оценочных средств (перечень вопросов к зачету), написание курсовой работы.

Перечень вопросов к промежуточной аттестации – зачету:

- 1. Математическая обработка экспериментальных данных. Метод наименьших квадратов.
- 2. Модели общей механики сплошных сред. Теория деформации.
- 3. Сплайн функции.
- 4. Уравнение газовой динамики.
- 5. Уравнение гидродинамики.
- 6. Уравнение акустики.
- 7. Разностные методы решения задач механики, жидкости и газа.
- 8. Прямое и обратное уравнение Колмогорова.
- 9. Полугруппа линейных ограниченных операторов.
- 10. Производящий оператор случайного марковского процесса.
- 11. Модель Леонтьева «затраты выпуск».
- 12. Модель экономического роста Солоу.
- 13. Модель фон Неймана.
- 14. Стабилизация системы «хищник жертва».

Темы курсовых работ:

- 1. Модели общей механики сплошных сред. Теория деформации.
- 2. Разностные методы решения задач механики, жидкости и газа.
- 3. Прямое и обратное уравнение Колмогорова.
- 4. Полугруппа линейных ограниченных операторов.
- 5. Производящий оператор случайного марковского процесса.
- 6. Продуктивность и неразложимость.
- 7. Равновесие в модели динамического межотраслевого баланса.

Для оценивания результатов обучения на зачете используются следующие **показатели**:

- 1) знание теоретических основ;
- 2) умение решать задачи
- 3) умение работать с алгоритмами методов и информационными ресурсами.

Для оценивания результатов зачета используется *шкала:* «зачтено», «не зачтено». Соотношение показателей, критериев и шкалы оценивания результатов обучения показаны в следующей таблице:

Критерии оценивания компетенций	Уровень сформированности компетенций	Шкала оценок
В ответе на вопросы контрольно-измерительного материала достаточно полно изложен теоретический материал; практическое задание выполнено, курсовая работа выполнена в полном объеме.	Достаточный	«Зачтено»
В ответе на вопросы контрольно-измерительного материала не достаточно полно или с существенными ошибками изложен теоретический материал или практическое задание не выполнено. Курсовая выполнена с грубыми ошибками или не выполнена совсем.	_	«Не зачтено»