МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой математического моделирования

М.Ш. Бурлуцкая 26.06.2022 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.12 Математические методы в естествознании

- 1. Код и наименование направления подготовки: 01.03.04 Прикладная математика
- **2. Профиль подготовки:** Применение математических методов к решению инженерных и экономических задач
- 3. Квалификация выпускника: бакалавр
- 4. Форма обучения: Очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

Кафедра математического моделирования

- 6. Составитель программы: Царев Сергей Львович, к.ф.-м.н.
- **7. Рекомендована:** Научно-методическим советом математического факультета, протокол № 0500-03 от 24.03.2022
- **8. Учебный год:** 2025/2026 **Семестр:** 7

9. Цели и задачи учебной дисциплины

Цель дисциплины: знакомство студентов с многообразием математических моделей, используемых в профессиональной деятельности математика.

Задачи учебной дисциплины:

- изучить методы построения математических моделей и методик построения моделей механики сплошной среды;
- развить умение составлять и анализировать математические модели в разных областях приложений;
- сформировать умения и навыки использования современного программного обеспечения для математического моделирования механических и технических изделий.

10. Место учебной дисциплины в структуре ОПОП:

Дисциплина «Математические методы в естествознании» относится к части, формируемой участниками образовательных отношений, Блока 1 Дисциплины (модули).

Для успешного освоения дисциплины необходимы знания умения, приобретенные В результате обучения ПО предшествующим дисциплинам: «Математический анализ», «Функциональный анализ», «Дифференциальные уравнения», «Уравнения с частными производными».

Учебная дисциплина «Математические методы в естествознании» является предшествующей для следующих дисциплин: «Задачи теории устойчивости», «Компьютерные системы для задач технических вычислений».

Знания, полученные по освоению дисциплины, являются неотъемлемой частью базовой математической подготовки и необходимы для учебной исследовательской работы, требующей проведения численного анализа той или иной физикоматематической модели и могут быть использованы при выполнении выпускной квалификационной работы специалиста.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ПК-1	ПК-1. Способен выявлять естественнонаучную сущность проблем, возникающих при решении инженерных и экономических задач	ПК-1.1	Обладает базовыми знаниями в области математических наук, программирования и информационных технологий Умеет собирать, обрабатывать, анализировать результаты исследований, полученных при решении инженерных и экономических	Знать: базовые принципы математического моделирования и типичные модели в естествознании. Уметь: строить математические модели для простейших задач естествознания. Владеть: навыками использования современных информационных технологий для построения моделей задач естествознания.
		ПК-1.3	задач Имеет практический опыт научно-исследовательской деятельности в математике и информатике	

12. Объем дисциплины в зачетных единицах/час.— 2/72.

Форма промежуточной аттестации: Зачет.

13. Трудоемкость по видам учебной работы

Вид учебной раб	ОТЫ	всего	1 семестр
Контактная работ	га	32	32
в том числе:	лекции	16	16
в том числе.	практические занятия	16	16
Самостоятельная	я работа	40	40
Промежуточная а	аттестация		
	Итого:	72	72

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайнкурса, ЭУМК *
	1	1. Лекции	,
1.1	Основные гипотезы и модели деформируемых тел.	1. Деформируемые тела: история, классификация, примеры. 2. Гипотезы о деформируемых телах. 3. Модели деформируемых тел.	https://edu.vsu.ru/cour se/view.php?id=16495
1.2	Растяжение и сжатие стержней.	Стержни: сущность, основные определения, примеры. Растяжение стержней. Сжатие стержней.	https://edu.vsu.ru/cour se/view.php?id=16495
1.3	Изгиб балок.	Балки: сущность, основные определения, примеры. Изгиб балок. Ещё о изгибе балок.	https://edu.vsu.ru/course/view.php?id=16495
1.4	Сложное напряженное состояние.	1. Классы тел, могущих испытывать сложное напряжённое состояние. 2. Сложное напряжённое состояние тел, которые могут его испытывать.	https://edu.vsu.ru/course/view.php?id=16495
1.5	Теория прочности.	1. Прочность: история и сущность понятия. 2. Математические модели прочности.	https://edu.vsu.ru/course/view.php?id=16495
1.6	Теория кручения.	1. Кручение: история и сущность понятия. 2. Математические модели кручения.	https://edu.vsu.ru/course/view.php?id=16495
1.7	Теория устойчивости.	1. Устойчивость: история и сущность понятия. 2. Математические модели устойчивости.	https://edu.vsu.ru/course/view.php?id=16495
		2. Практические занятия	
2.1	Основные гипотезы и модели деформируемых тел.	1. Деформируемые тела: история, классификация, примеры. 2. Гипотезы о деформируемых телах. 3. Модели деформируемых тел.	https://edu.vsu.ru/course/view.php?id=16495
2.2	Растяжение и сжатие стержней.	 Стержни: сущность, основные определения, примеры. Растяжение стержней. Сжатие стержней. 	https://edu.vsu.ru/course/view.php?id=16495
2.3	Изгиб балок.	Балки: сущность, основные определения, примеры. Изгиб балок. Ещё о изгибе балок.	https://edu.vsu.ru/cour se/view.php?id=16495
2.4	Сложное напряженное состояние.	1. Классы тел, могущих испытывать сложное напряжённое состояние. 2. Сложное напряжённое состояние тел, которые могут его испытывать.	https://edu.vsu.ru/cour se/view.php?id=16495
2.5	Теория прочности.	1. Прочность: история и сущность понятия. 2. Математические модели прочности.	https://edu.vsu.ru/cour se/view.php?id=16495

2.6	Тоория круполия	1. Кручение: история и сущность понятия.	https://edu.vsu.ru/cour
	Теория кручения.	2. Математические модели кручения.	se/view.php?id=16495
2.7	Тоория устойширости	1. Устойчивость: история и сущность понятия.	https://edu.vsu.ru/cour
	Теория устойчивости.	2. Математические модели устойчивости.	se/view.php?id=16495

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы (раздела) дисциплины	Виды занятий (количество часов)					
п/п		Лекции	Практич.	Лаб.	Самост. работа	Всего	
1	Основные гипотезы и модели деформируемых тел.	4	4		6	14	
2	Растяжение и сжатие стержней.	2	2		6	10	
3	Изгиб балок.	2	2		6	10	
4	Сложное напряженное состояние.	2	2		6	10	
5	Теория прочности.	2	2		4	8	
6	Теория кручения.	2	2		6	10	
7	Теория устойчивости.	2	2		6	10	
	Итого:	16	16		40	72	

14. Методические указания для обучающихся по освоению дисциплины.

В процессе преподавания дисциплины используются следующие виды учебной работы: лекции, практические занятия, а также различные виды самостоятельной работы обучающихся. На лекциях рассказывается теоретический материал, на практических занятиях решаются примеры по теоретическому материалу, прочитанному на лекциях.

При изучении курса «Математические методы в естествознании» обучающимся следует внимательно слушать и тщательно конспектировать материал, излагаемый на аудиторных занятиях. Для его понимания и качественного усвоения рекомендуется следующая последовательность действий.

- 1. После каждой лекции студентам рекомендуется подробно разобрать прочитанный теоретический материал, выучить все определения и формулировки теорем, разобрать примеры, решенные на лекции. Перед следующей лекций обязательно повторить материал предыдущей лекции.
- 2. Перед практическим занятием обязательно повторить лекционный материал. После практического занятия еще раз разобрать решенные на этом занятии примеры, после чего приступить к выполнению домашнего задания. Если при решении примеров, заданных на дом, возникнут вопросы, обязательно задать на следующем практическом занятии или в присутственный час преподавателю.
- 3. При подготовке к практическим занятиям повторить основные понятия по темам, изучить примеры. Решая задачи, предварительно понять, какой теоретический материал нужно использовать. Наметить план решения, попробовать на его основе решить практические задачи.

При подготовке к занятиям всех видов рекомендуется пользоваться интернет-курсом на образовательной платформе «Электронный университет ВГУ»: https://edu.vsu.ru/course/view.php?id=16495.

Выполняемые студентами самостоятельно задания подлежат последующей проверке преподавателем для получения допуска к зачету.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Советов Б. Я. Моделирование систем. – М.: Высшая школа, 2003. – 295 с.

б) дополнительная литература:

№ п/п	Источник				
,	Зачепа, В. Р. Локальный анализ фредгольмовых уравнений / В. Р. Зачепа, Ю. И.				
2	Сапронов ; Воронеж. гос. ун-т, Воронеж. гос. пед. ун-т .— Воронеж, 2002 .— 187 с.				
0	Вайнберг М. М. Теория ветвления решений нелинейных уравнений / М.М.				
3	Вайнберг, В.А. Треногин .— М. : Наука, 1969 .— 527 с.				

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Источник				
1	http://www.dxdy.ru — Научный форум.				
2	http://www.lib.vsu.ru — электронный каталог ЗНБ ВГУ				
3	ЭБС «Университетская библиотека онлайн»				
3	Баврин И.И. Начала анализа и математические модели в естествознании и экономике. — M., 2020. — URL: https://www.mathedu.ru/text/bavrin_nachala_analiza_v_estestvoznanii_i_ekonomike_2000/p0/				
4	Боголюбов А. Н. Введение в математическое моделирование : URL: http://math.phys.msu.ru/data/530/Glava_1.pdf				

16. Перечень учебно-методического обеспечения для самостоятельной работы:

№ п/п	Источник				
_	Костин В. А. Введение в математическое моделирование / В. А. Костин,				
1	Д. В. Костин, С. Л. Царев. – Воронеж: Изд. Дом ВГУ, 2021. – 62 с.				
2	Самарский А. А. Математическое моделирование. Идеи. Методы. Примеры /				
	А. А. Самарский, А. П. Михайлов. – Изд. 2-е, испр. – М. : Физматлит, 2002. – 316 с.				
5	Положение об организации самостоятельной работы обучающихся в				
5	Воронежском государственном университете				
	«Электронный университет ВГУ»: курс «Математические методы в				
6	естествознании»: URL: https://edu.vsu.ru/course/view.php?id=16495 .				

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

Дисциплина может реализовываться с применением дистанционных образовательных технологий, например, на платформе «Электронный университет ВГУ» (https://edu.vsu.ru/course/view.php?id=16495).

Перечень необходимого программного обеспечения: операционная система Windows или Linux, браузер Mozilla Firefox, Opera или Internet.

18. Материально-техническое обеспечение дисциплины: Учебная аудитория для проведения занятий лекционного и семинарского типа, текущего контроля и промежуточной аттестации со специализированной мебелью.

Для самостоятельной работы используется класс с компьютерной техникой, оснащенный специализированной мебелью, маркерной доской, маркерами, необходимым программным обеспечением, электронными учебными пособиями и законодательноправовой и нормативной поисковой системой, имеющий выход в глобальную сеть.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Основные гипотезы и модели деформируемых тел.	ПК-1	ПК-1.1 ПК-1.2 ПК-1.3	Контрольные домашние задания
2.	Растяжение и сжатие стержней.	ПК-1	ПК-1.1 ПК-1.2 ПК-1.3	Контрольные домашние задания
3	Изгиб балок.	ПК-1	ПК-1.1 ПК-1.2 ПК-1.3	Контрольные домашние задания
4	Сложное напряженное состояние.	ПК-1	ПК-1.1 ПК-1.2 ПК-1.3	Контрольные домашние задания
5	Теория прочности.	ПК-1	ПК-1.1 ПК-1.2 ПК-1.3	Контрольные домашние задания
6	Теория кручения.	ПК-1	ПК-1.1 ПК-1.2 ПК-1.3	Контрольные домашние задания
7	Теория устойчивости.	ПК-1	ПК-1.1 ПК-1.2 ПК-1.3	Контрольные домашние задания
	Промежуточна Форма контр	•	Перечень вопросов к зачету	

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью приведенных ниже контрольных домашних заданий.

Контрольное домашнее задание к теме 1

Круглая колонна диаметра d сжимается силой F. Определить увеличение диаметра Δd, зная модуль упругости E и коэффициент Пуассона v материала колонны.

Контрольное домашнее задание к теме 2

Однопролетная балка находится под действием сосредоточенной силы, приложенной к середине балки. Найти дифференциальное уравнение изгиба и найти максимальные прогибы и углы поворота методом начальных параметров.

Контрольное домашнее задание к теме 3

Однопролетная балка находится под действием сосредоточенной силы, приложенной к середине балки. Найти дифференциальное уравнение изгиба и найти максимальные прогибы и углы поворота методом начальных параметров.

Контрольное домашнее задание к теме 4

Записать тензор напряжений для продольно сжимаемого силой F упругого стержня длины I и диаметра d.

Контрольное домашнее задание к теме 5

Выписать оценки прочности для продольно сжимаемого силой F упругого стержня длины I и диаметра d.

Контрольное домашнее задание к теме 6

К стальному ступенчатому валу, имеющему сплошное круглое сечение, приложены четыре внешних закручивающих момента (Т1, Т2, Т3 и Т4), левый конец вала жестко закреплен в опоре, а правый конец — свободен и его торец имеет угловые перемещения относительно левого конца. Построить бифуркационную диаграмму.

Контрольное домашнее задание к теме 7

Исследовать устойчивость системы x""+3x"-2x"+10x'-x=0.

Текущий контроль представляет собой проверку усвоения учебного материала теоретического и практического характера, регулярно осуществляемую на занятиях.

Цель текущего контроля — определение уровня сформированности профессиональных компетенций, знаний и навыков деятельности в области знаний, излагаемых в курсе.

Задачи текущего контроля: провести оценивание

- 1. уровня освоения теоретических и практических понятий, научных основ профессиональной деятельности;
- 2. степени готовности обучающегося применять теоретические и практические знания и профессионально значимую информацию, сформированности когнитивных умений.
- 3. приобретенных умений, профессионально значимых для профессиональной деятельности.

20.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется в форме собеседования по зачетным вопросам с использованием ниже приведенных оценочных средств (перечень вопросов к зачету). В билет включаются теоретический вопрос и одно из упражнений из перечня домашних контрольных заданий.

Перечень вопросов к зачету:

№№ п/п	Вопросы к промежуточной аттестации (зачету)		
1.	Деформируемые тела: история, классификация, примеры.		
2.	Гипотезы о деформируемых телах.		
3.	Модели деформируемых тел.		
4.	Стержни: сущность, основные определения, примеры.		
5.	Растяжение стержней.		
6.	Сжатие стержней.		
7.	Балки: сущность, основные определения, примеры.		
8.	Изгиб балок.		
9.	Классы тел, могущих испытывать сложное напряжённое состояние. Математические модели сложного напряженного состояния.		
10.	Прочность: история и сущность понятия. Математические модели прочности.		
11.	Кручение: история и сущность понятия. Математические модели кручения.		
12.	Устойчивость: история и сущность понятия. Математические модели устойчивости.		

Для оценивания результатов обучения на зачете используются следующие **показатели:**

- 1) знание теоретических основ;
- 2) умение решать задачи
- 3) умение работать с алгоритмами методов и информационными ресурсами.

Для оценивания результатов зачета используется *шкала:* «зачтено», «не зачтено». Соотношение показателей, критериев и шкалы оценивания результатов обучения показаны в следующей таблице:

Критерии оценивания компетенций	Уровень	Шкала оценок
	сформированнос	
	ти компетенций	
В ответе на вопросы контрольно-измерительного	Достаточный	«Зачтено»
материала достаточно полно изложен теоретический		
материал и выполнено практическое задание.		
В ответе на вопросы контрольно-измерительного	_	«Не зачтено»
материала не достаточно полно или с ошибками		
изложен теоретический материал или практическое		
задание не выполнено.		