МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой оптики и спектроскопии

(Овчинников О.В.)

подпись, расшифровка подписи

24.06.2022 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.31 Практикум по атомной спектроскопии Код и наименование дисциплины в соответствии с Учебным планом

1. Шифр и наименование направления подготовки / специальности:

<u>03.03.02 – Физика</u>

Профиль подготовки / специализация/магистерская программа: <u>все профили</u>

- 3. Квалификация (степень) выпускника: Высшее образование (бакалавр)
- 4. Форма обучения: очная_
- **5.** Кафедра, отвечающая за реализацию дисциплины: кафедра оптики и спектроскопии
- 6. Составители программы: <u>Леонова Лиана Юрьевна, кандидат физико-математических наук, доцент</u>
- 7. Рекомендована: <u>НМС физического факультета от 23.06.22 г. протокол № 6</u> (наименование рекомендующей структуры, дата, номер протокола)

8. Учебный год: 2024/2025 Семестр(ы): 5

9 Цели и задачи учебной дисциплины:

Целями освоения учебной дисциплины являются: получение знаний по основам современной теории излучения света атомами, физическим, аппаратным и методическим основам современного спектрального анализа, базирующегося на явлениях эмиссии света атомами. Практикум предназначен для студентов физического факультета, изучающих теоретический курс «Атомная физика»..

Задачи учебной дисциплины:

- изучить физические принципы действия современных спектральных приборов (как призменных, так и дифракционных), источников света и приемников излучения оптического диапазона;
- освоить методики качественного и полуколичественного спектральных анализов при исследовании атомарного состава вещества.
 - **10. Место учебной дисциплины в структуре ООП:** обязательная часть блока Б1.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения

образовательной программы (компетенциями выпускников):

Код	Название	Код(ы)	иы (компетенциями Индикатор(ы)	· · · · · · · · · · · · · · · · · · ·
код		код(ы)	индикатор(ы)	Планируемые результаты
000	компетенции	0016	D	обучения
ОПК-	Способен	ОПК-	Решает типовые	знать: основы современной теории
1	применять базовые	1.4	задачи с учетом	излучения света атомами;
	знания в области		основных понятий и	
	физико-		общих	уметь: применять на практике
	математических и		закономерностей,	знания о современных
	(или) естественных		сформулированных в	спектральных приборах и
	наук в сфере своей		рамках базовых	использовать их на практике;
	профессиональной деятельности		дисциплин	
	деятельности		естественных наук	владеть: основными методами
			(прежде всего химии, биологии, экологии,	решения типовых задач спектрального анализа.
			наук о земле и	спектрального анализа.
			человеке)	
			lestobere)	
		ОПК-	Умеет использовать	
		1.5	знания основных	
			законов	
			естественнонаучных	
			дисциплин в	
			профессиональной	
			деятельности	
		ОПК-	Владеет навыками	
		1.6	использования	
			знаний о методах	
			исследования,	
			современных	
			концепциях,	
			достижениях и	
			ограничениях	
			естественных наук	
			при решении	
			практических задач,	
			структурирования	
			естественно- научной	
			информации	

ОПК-	Способен	ОПК-	Выбирает	И	знать: физические, аппаратные и
2	проводить научные	2.1	использует		методические основы
	исследования		соответствующие		современного спектрального
	физических		ресурсы,		анализа;
	объектов, систем и		современные		
	процессов,		методики	И	уметь: применять на практике
	обрабатывать и		оборудование дл	ΙЯ	современные спектральные
	представлять		проведения		приборы (как призменные, так и
	экспериментальные		экспериментальных		дифракционные), источники света
	данные		исследований	И	и приемники излучения
			измерений		оптического диапазона;
		ОПК-	Обрабатывает	и	владеть: основными методами
		2.2	представляет	,,	решения типовых задач
		2.2	полученные		спектрального анализа.
			экспериментальные		onekipasibilore aliasivisa.
			данные дл		
			получения	.,,	
			обоснованных		
			выводов		

12. Объем дисциплины в зачетных единицах/час.(в соответствии с учебным планом) —2/72.

Форма промежуточной аттестации зачет

13 Виды учебной работы:

Вид учебной работы		Трудоемкость		
		Всего	По семестрам № 5	
Аудиторные заня	птия	34	34	
	лекции			
в том числе:	практические			
	лабораторные	34	34	
Самостоятельна	я работа	38	38	
в том числе: курсовая работа (проект)				
Форма промежуточной аттестации <i>зачет</i>				
Итого:		72	72	

13.1. Содержание дисциплины

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины
1	Введение	Основы современной теории излучения света атомами. Постулаты Бора. Квантовые числа. Сериальные закономерности в спектре атома водорода.
2	Эмиссионный спектральный анализ	Этапы спектрально-аналитического процесса. Подготовка пробы к проведению анализа. Выбор источника, спектрального прибора, приемника излучения. Изучение таблиц и атласов.

	Оборудование для	Изучение источников возбуждения спектра,
3	проведения	призменных и дифракционных спектрографов.
	спектрального анализа	Приемники электромагнитного излучения.
4	Качественный спектральный анализ	Теоретические основы проведения качественного спектрального анализа. Аналитические и контрольные линии. Концентрационная чувствительность. Выполнение лабораторной работы.
5	Полуколичественный спектральный анализ	Теоретические основы проведения полуколичественного спектрального анализа. Интенсивность спектральных линий. Освоение различных методов полуколичественного спектрального анализа. Выполнение лабораторной работы по методу «последних линий».

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование раздела дисциплины	Виды занятий (часов)					
п/п		Лекции	Практические	Лабораторные	Самостоятельная работа	Всего	
1	Введение	-	-	2	2	4	
2	Эмиссионный спектральный анализ	-	-	2	2	4	
3	Оборудование для проведения спектрального анализа	-	-	6	2	8	
4	Качественный спектральный анализ	-	-	14	16	30	
5	Полуколичественный спектральный анализ	-	-	10	16	26	
	Итого			34	38	72	

14. Методические указания для обучающихся по освоению дисциплины

Основными этапами освоения дисциплины являются:

- Изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств научной информации.
 - Подготовка к лабораторным занятиям.

В ходе подготовки к текущим аттестациям и промежуточной аттестации студенту рекомендуется активно использовать электронный образовательный портал Moodle – электронная среда дисциплины, с предоставлением презентаций заданий для выполнения лабораторных работ, дополнительного теоретического материала и нормативно-правовых документов по темам и перечней вопросов для подготовки к текущим аттестациям и промежуточной аттестации. Также студенту рекомендуется использовать весь набор методов и средств современных информационных технологий для изучения отечественной и зарубежной литературы по дисциплине, оценки и анализа ее текущего состояния и перспектив развития. Ему предоставляется возможность работать компьютерных классах факультета (313а аудитория), иметь доступ к Интернетресурсам и электронной почте, использовать имеющиеся на кафедре оптики и спектроскопии физического факультета информационные технологии. использовать ресурсы Зональной научной библиотеки ВГУ, в том числе электронно-библиотечные системы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с

а) основная литература:

Nº ⊓/⊓	Источник
1	Пабораторный практикум по атомной физике: "Атомный эмиссионный спектральный анализ" [Электронный ресурс] : учебное пособие для вузов : [для проведения лаб. практикума по "Атомной физике" у студ. 3 курса физ. фак.,обуч. по направлениям "Физика" и "Радиофизика"; для направлений 011800 - Радиофизика, 011200 - Физика] / Воронеж. гос. ун-т; [сост. : О.В. Овчинников и др.] .— Электрон. текстовые и граф. дан. — Воронеж : Издательско-полиграфический центр Воронежского государственного университета, 2013 .— Загл. с титул. экрана .— Свободный доступ из интрасети ВГУ .— Текстовый файл .— Windows 2000; Adobe Acrobat Reader .— <url:http: elib="" m13-175.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
2	Тимофеев, В.Б. Оптическая спектроскопия объемных полупроводников и наноструктур : / Тимофеев В.Б Москва : Лань", 2015. <url:http: books="" e.lanbook.com="" element.php?pl1_id="56610">.</url:http:>
3	Спектральные методы анализа: учебное пособие / Е.В. Пашкова, Е. Волосова, А.Н. Шипуля и др.; Министерство сельского хозяйства Российской Федерации, Ставропольский государственный Лабораторный практикум по атомной физике: "Атомный эмиссионный спектральный анализ" [Электронный ресурс]: учебное пособие для вузов: [для проведения лаб. практикума по "Атомной физике" у студ. 3 курса физ. фак.,обуч. по направлениям "Физика" и "Радиофизика"; для направлений 011800 - Радиофизика, 011200 - Физика] / Воронеж. гос. ун-т; [сост.: О.В. Овчинников и др.]. — Электрон. текстовые и граф. дан. — Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2013 .— Загл. с титул. экрана. — Свободный доступ из интрасети ВГУ. — Текстовый файл. — Windows 2000; Adobe Acrobat Reader. — <url:http: elib="" m13-175.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>

б) дополнительная литература:

Nº	Источник
п/п	ИСТОЧНИК
4	Борщевский А.Я. Строение атомных частиц. Водородоподобные атомы / А.Я. Борщевский. – М. : МГУ, 2010. – 86 с.
5	Барсуков В.И. Атомный спектральный анализ / В.И. Барсуков. — М. : Изд-во Машиностроение-1, 2005. — 103 с.
6	Хасанов Р.Р. Атомно-эмиссионный спектральный анализ: Учебно-методическое пособие / Р.Р. Хасанов, Р.Р. Хусаинов. – Казань: Казанский (Приволжский) федеральный университет, 2012. – 27 с.
7	Прикладная физическая оптика: учеб. Пособие для студ инжфиз. и оптич. спец. вузов / В.А. Москалева, И.М. Нагибина, Н.А. Полушкина и др. — СПб.: Политехника, 1995 527 с.
8	Лебедева В. В. Техника оптической спектроскопии: учебное пособие для студ. физич. и физмат. фак-в ун-тов / В.В. Лебедева М.: Изд-во Московского ун-та, 1986 352 с.
9	Русанов А.К. Основы количественного спектрального анализа руд и минералов / А.К. Русанов. – М. : Недра, 1978 – 400 с.
10	Малышев В.И. Введение в экспериментальную спектроскопию / В.И. Малышев М.: Изд. физмат. лит., 1979 384 с.
11	Нагибина И.М. Спектральные приборы и техника спектроскопии / И.М. Нагибина, В.К. Прокофьев М.; Л. : Изд. Машиздат. [Лен. Отд-е], 1963 271 с.
12	Зайдель А.Н. Таблицы спектральных линий / А.Н. Зайдель, В.К. Прокофьев, С.М. Райский. – М.: Наука, 1977. – 800 с.
13	Калинин С.К. Атлас дугового спектра / С.К. Калинин, А.А. Явнель. – М.: Гостехиздат, 1952. – 52 с.
14	Прэтт У. Цифровая обработка изображений. Т. 1, 2 / У. Прэтт. – М. : Мир, 1982. – 312 с, 480 с.
15	Физические основы и принципы работы приемников излучения в оптических системах: учебно- методическое пособие по специальности 010701 (010400) — Физика / Воронежский гос. ун-т; сост.: Т.В. Волошина, Л.Ю. Леонова, В.Н. Расхожев. — Воронеж: ЛОП ВГУ, 2005. — 39 с.
16	Шаевич А.Б. Методы оценки точности спектрального анализа. М. : Металлургиздат, 1964. – 71 с.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
1	Поисковая система e-library.ru
2	Поисковая система google.ru
3	Архив научных журналов http://arch.neicon.ru/
4	Единое окно доступа к образовательным ресурсам. Биб <u>лиотека http://window.edu.ru/</u>

5	Электронный каталог ЗНБ ВГУhttps:// <u>www.lib.vsu.ru/</u>
6	ЭБС "Издательства "Лань" https://e.lanbook.com
7	ЭБС "Университетская библиотека online" https://biblioclub.lib.vsu.ru
8	Национальный цифровой ресурс "РУКОНТ" https://rucont.ru
9	Электронная библиотека Попечительского совета механико-математического факультета МГУ
10	Виртуальная обучающая среда Moodle < <u>https://edu.vsu.ru</u> >

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1.	Общий физический практикум: "Атомный эмиссионный спектральный анализ" [Электронный ресурс]: учебное пособие: [для студ. 3 курса физ. фак.; для направления 011800 - Радиофизика] / Воронеж. гос. ун-т; [сост.: О.В. Овчинников и др.].— Электрон. текстовые и граф. дан. — Воронеж: Издательский дом ВГУ, 2015.— Загл. с титул. экрана.— Свободный доступ из интрасети ВГУ.— Текстовый файл.— Windows 2000; Adobe Acrobat Reader.— <url:http: elib="" m15-31.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
2.	Лабораторный практикум по атомной физике: "Атомный эмиссионный спектральный анализ" [Электронный ресурс] : учебное пособие для вузов : [для проведения лаб. практикума по "Атомной физике" у студ. З курса физ. фак.,обуч. по направлениям "Физика" и "Радиофизика" ; для направлений 011800 - Радиофизика, 011200 - Физика] / Воронеж. гос. ун-т; [сост. : О.В. Овчинников и др.] .— Электрон. текстовые и граф. дан. — Воронеж : Издательско-полиграфический центр Воронежского государственного университета, 2013 .— Загл. с титул. экрана .— Свободный доступ из интрасети ВГУ .— Текстовый файл .— Windows 2000; Adobe Acrobat Reader .— <url:http: elib="" m13-175.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
3.	Методические рекомендации по выполнению самостоятельной работы обучающимися в бакалавриате по направлению "Физика" [Электронный ресурс] : учебно-методическое пособие : [для студ. 4-го курса направления 03.03.02 Физика] / Сост.: Л.Ю. Леонова, Л.В. Титова ; Воронеж. гос. ун-т.— Электрон. текстовые дан. — Воронеж : Издательский дом ВГУ, 2019.
4.	Электронный курс для дистанционного обучения «Практикум по атомной эмиссионной спектроскопии» https://edu.vsu.ru/enrol/index.php?id=6376

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно- справочные системы (при необходимости)

В учебном процессе используются следующие образовательные технологии. По образовательным формам: лекционные и практические занятия. Преобладающими методами и приемам обучения являются: объяснительно-иллюстративные (объяснение, показ — демонстрация учебного материала и др.); активные (анализ учебной и научной литературы, составление схем и др.) и интерактивные, в том числе и групповые (взаимное обучение в форме подготовки и обсуждения докладов); информационные; мультимедийные (работа с сайтами академических структур, научно-исследовательских организаций, электронных библиотек и и др., разработка презентаций, сообщений и докладов, работа с электронными обучающими программами и т.п.).

Организационная структура лабораторного занятия: 1. Формулировка целей занятия и ответы на вопросы студентов. 2. Ознакомление с теоретической основой работы, основными приемами и техникой безопасности при работе с используемыми приборами и реактивами.3. Выполнение экспериментальной части работы. 4. Обработка экспериментальных результатов и предоставление их для предварительной проверки преподавателю.

Защита лабораторной работы проводится с целью выявления уровня освоения материала по тематике работы, способности дать правильную трактовку результатам, полученным при выполнении работы. Защита работы заключается в оформлении работ, устной беседе преподавателя со студентом по полученным в работе результатам и основным теоретическим понятиям по теме работы.

Текущий контроль проводится путем проверки выполнения домашнего задания, входного контроля (в виде самостоятельных и контрольных работ, докладов и

рефератов).

При реализации дисциплины с использованием дистанционных образовательных технологий используются инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru) и/или "МООК ВГУ" (https://mooc.vsu.ru), сервисы видеоконференций (BigBlueButton, Zoom, Discord и др.), электронная почта, мессенджеры и соцсети.

1.	Пакет офисных программ LibreOffice (https://ru.libreoffice.org/)
2.	Программное обеспечение ПЗС-линейки ССD Tool

18. Материально-техническое обеспечение дисциплины:

Учебные и учебно-научные лаборатории кафедры оптики и спектроскопии для проведения лабораторных занятий: генератор активизированной дуги переменного тока и высоковольтной искры ИВС-29 с поджигом высокочастотным разрядом и напряжением порядка 30000 В; спектрометр с плоской дифракционной решеткой PGS-2 с ПЗС-линейкой фирмы ToshibaTCD1304AP; маркерная доска, компьютер, проектор, экран, учебная и методическая литература.

Аудитория для групповых и индивидуальных консультаций, текущей и промежуточной аттестации

Аудитория для самостоятельной работы, компьютерный класс с доступом к сети «Интернет»: компьютеры (мониторы, системные блоки) (15 шт.)

Реализация дисциплины с применением электронного обучения и дистанционных образовательных технологий осуществляется через образовательный портал "Электронный университет ВГУ" (https://edu.vsu.ru).

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание	Планируемые	Этапы формирования	
компетенции (или ее части)	результаты обучения	компетенции (разделы	ФОС
	(показатели	(темы) дисциплины или	(средства
	достижения заданного	модуля и их	оценивания)
	уровня освоения	наименование)	,
	компетенции	,	
ОПК-1.4. Решает типовые	знать: основы	Этапы 1-5	Отчет о
задачи с учетом основных	современной теории	Введение	выполнении
понятий и общих	излучения света	Эмиссионный	лабораторной
закономерностей,	атомами;	спектральный анализ	работы
сформулированных в рамках		Оборудование для	
базовых дисциплин	уметь: применять на	проведения	
естественных наук (прежде	практике знания о	спектрального анализа	
всего химии, биологии, экологии,	современных	Качественный	
наук о земле и человеке)	спектральных	спектральный анализ	
	приборах и	Полуколичественный	
ОПК-1.5. Умеет использовать	использовать их на	спектральный анализ	
знания основных законов	практике;		
естественнонаучных дисциплин			
в профессиональной	владеть: основными		
деятельности	методами решения		
	типовых задач		
ОПК-1.6. Владеет навыками	спектрального		
использования знаний о методах	анализа.		
исследования, современных			
концепциях, достижениях и			
ограничениях естественных наук			
при решении практических			
задач, структурирования			
естественно- научной			
информации			

ОПК-2.1. Выбирает и использует	знать: физические,	Отчет о
соответствующие ресурсы,	аппаратные и	выполнении
современные методики и	методические основы	лабораторной
оборудование для проведения	современного	работы
экспериментальных	спектрального анализа;	
исследований и измерений		
	уметь: применять на	
ОПК-2.2. Обрабатывает и	практике современные	
представляет полученные	спектральные приборы	
экспериментальные данные для	(как призменные, так и	
получения обоснованных	дифракционные),	
	источники света и	
выводов	приемники излучения	
	оптического диапазона;	
	владеть: основными	
	методами решения	
	типовых задач	
	спектрального анализа.	
	onempasionero ariasmoa.	
Промежуточная аттестация (за	чет)	КИМ

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на зачете используются следующие показатели (ЗУНы из 19.1):

- 1) знание учебного материала, владение понятийным аппаратом и теоретическими основами геофизических явлений;
- 2) умение связывать теорию с практикой;
- 3) умение использовать знания об опасных космических и гелиофизических явлениях;
- 4) владение современными способами атомного эмиссионного анализа.

Для оценивания результатов обучения на зачете используется — зачтено, не зачтено Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Посещение лабораторных занятий. Правильно выполненные задания лабораторных работ. Ответ на вопрос контрольно-измерительного материала во время зачета. Ответы на дополнительные вопросы по основам атомного эмиссионного анализа. Обучающийся в полной мере владеет понятийным аппаратом и теоретическими основами дисциплины, способен иллюстрировать ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения практических задач в области экологической геофизики.	Повышенный базовый и пороговый уровни	зачтено
Пропуски занятий без уважительных причин. Неправильно выполненные лабораторные работы. Неумение давать ответы по основным вопросам дисциплины. Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые ошибки.	_	не зачтено

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к зачету:

- 1. Строение атома. Сериальная структура атомных спектров. Излучение и поглощение квантов света атомами.
- 2. Спектральные линии и их характеристики. Абсолютная и относительная интенсивности спектральных линий.
- 3. Основные этапы спектрально-аналитического процесса для качественного спектрального анализа (выбор линий; выбор источника возбуждения, спектрального прибора; регистрация спектра; методы введения вещества в разрядный промежуток).
- 4. Физические основы и техника возбуждения атомных эмиссионных спектров. Принцип работы генератора ИВС-29.
- 5. Спектральные приборы для атомных эмиссионных спектров (принцип строения, осветительная часть, характеристики). Классификация спектральных приборов.
- 6. Дифракция Фраунгофера. Построение и принцип действия спектрометра с плоской дифракционной решеткой PGS-2.
- 7. Детектирование атомных эмиссионных спектров. Принцип действия приборов с зарядовой связью.
- 8. Основные этапы получения и расшифровки атомных эмиссионных спектров для качественного спектрального анализа.
 - 9. Случайные и систематические ошибки эмиссионного анализа.
- 10 Чувствительность спектрального анализа. Предел обнаружения. Надежность. Применение эмиссионного спектрального анализа.

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме: устного опроса (индивидуальный опрос, фронтальная беседа); тестирования; оценки результатов практической деятельности (выполнение лабораторных работ). Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний. Практический уровень полученных знаний оценивается при сдаче отчетов по лабораторным работам.

При оценивании используется качественная шкала оценок. Критерии оценивания приведены выше.

Составитель:

Леонова Лиана Юрьевна, кандидат физико-математических наук, доцент

Программа рекомендована НМС физического факультета ВГУ

(наименование факультета, структурного подразделения)

Heur