МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой функционального анализа и операторных уравнений

Каменский М.И. 25.05.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.04.02 Информатика

- **1. Код и наименование направления специальности:** 10.05.04 информационноаналитические системы безопасности
- **2. Профиль специализации:** Автоматизация информационно-аналитической деятельности
- 3. Квалификация выпускника: специалист по защите информации
- 4. Форма обучения: очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** функционального анализа и операторных уравнений
- **6. Составители программы:** Ушаков Сергей Николаевич, кандидат физикоматематических наук.
- **7. Рекомендована**: научно-методическим советом математического факультета, протокол от 25.05.2023, № 0500-06

8. Учебный год: 2023-2024 **Семестр**: 1

9. Цели и задачи учебной дисциплины:

Цели изучения дисциплины:

- подготовка в области применения современной вычислительной техники для решения практических задач обработки данных, математического моделирования, информатики, получение высшего специального образования, позволяющего выпускнику успешно работать в избранной сфере деятельности с применением современных компьютерных технологий.

Задачи учебной дисциплины:

- изучить основные принципы работы ЭВМ, основное устройство компьютера, методологические основы технологии программирования.
- **10. Место учебной дисциплины в структуре ООП:** Дисциплина относится к обязательной части Блок 1. Дисциплины (модули).

Дисциплина "Информатика" является предшествующей для изучения следующих дисциплин: «Языки программирования», «Технология и методы программирования».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Коды	Индикаторы	Планируемые результаты обучения
ОПК- 1	Способен оценивать роль информации, информационных технологий и информационной безопасности в современном обществе, их значение для обеспечения объективных потребностей личности, общества и государства;	ОПК- 1.1	Способен оценивать роль информации и информационных технологий в современном обществе, их значение для обеспечения объективных потребностей личности, общества и государства	электронных таблицах, программах для создания презентаций

12. Объем дисциплины в зачетных единицах/час. — 4/144.

Форма промежуточной аттестации — экзамен.

13. Трудоемкость по видам учебной работы

	Вид учебной работы		Трудоемкость		
Вид уче			По семестрам		
			1 семестр		
Аудиторные заня	тия	50	50		
	лекции	34	34		
в том числе:	практические				
	лабораторные	16	16		
Самостоятельна	Самостоятельная работа		58		
в том числе: курсовая работа (проект)					
Форма промежуточной аттестации (экзамен – 36 час.)		36	36		
V	Ітого:	144	144		

13.1. Содержание дисциплины

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины
1	Информация. Сигналы. Данные	Подходы к определению понятий «информации» и «информатики». Свойства информации. Классификация информации. Формы представления информации. Меры и единицы количества и объёма информации.
2	Общая характеристика базовой информационной технологии	Концептуальный уровень (содержательный аспект) Логический уровень (формализованное/модельное описание). Физический уровень (программно-аппаратная реализация)
3	Кодирование информации	Особенности кодирования информации различной природы. Кодирование текстовой информации, графической, аудио- и видеоинформации.
4	Представление информации в ЭВМ	Числа конечной точности. Позиционные системы счисления. Преобразование чисел из одной системы счисления в другую. Отрицательные двоичные числа. Двоичная арифметика. Принципы представления чисел с плавающей точкой. Стандарт IEEE 754.
5	Основы алгоритмизации	Понятие алгоритма и его свойства. Способы записи алгоритмов.
6	История развития ЭВМ. Понятие и основные виды архитектуры ЭВМ	Принципы архитектуры ЭВМ Дж. фон Неймана. Поколения ЭВМ и их характерные особенности. Классы вычислительных машин

7	COOTOR M HOOMSHOUMS	
7	Состав и назначение основных элементов персонального компьютера	Основные сведения. Микропроцессоры ПК. Материнские платы. Основная память (физическая структура основной памяти, ПЗУ, типы оперативной памяти).
8	Процессоры	Устройство центрального процессора. Выполнение команд. Системы RISC и CISC. Принципы проектирования современных компьютеров. Параллелизм на уровне команд. Параллелизм на уровне процессоров.
9	Основная и вспомогательная память	Бит. Адреса памяти. Упорядочение байтов. Код исправления ошибок. Кэш-память. Иерархическая структура памяти. Магнитные диски. IDE-диски. SCSI-диски. RAID-массивы. Твердотельные накопители. Диски CD-ROM, CD-R, CD-RW, DVD-диски. Диски Blu-Ray.
10	Устройства ввода/вывода данных	Шины. Шины PCI и PCIe. Клавиатуры. Сенсорные экраны. Плоские мониторы. Видеопамять. Мыши. Игровые контроллеры. Принтеры. Цифровые фотокамеры.
11	Понятие системного и служебного (сервисного) программного обеспечения	Классификация программного обеспечения компьютеров. Операционная система: назначение, основные принципы организации. Процессы и потоки. Средства синхронизации процессов. Управление памятью.
12	Программные средства реализации информационных процессов	Текстовые редакторы. Текстовые процессоры. Электронные таблицы. Средства электронных презентаций.
13	Файловая структура операционных систем. Операции с файлами	Имена и типы файлов. Логическая и физическая организация файлов, адреса файлов. Кэширование дисков
14	Архитектура вычислительных систем	Определение сети ЭВМ. Классификации сетей. Понятия локальных, региональных, глобальных сетей Топологии построения сетей.
15	Стек сетевых протоколов ISO OSI и протоколы Internet	Многоуровневая модель сетевых взаимодействий. Стек протоколов TCP/IP. Транспортный уровень и службы Internet. Последовательности состояний TCP сервера и TCP клиента
16	IP-адресация. IP- маршрутизация.	Маршрутизация в глобальной сети Internet. Протоколы маршрутизации в Интернет.
17	Программирование сетевых взаимодействий, socket интерфейс	Сокеты и установление соединения клиент-сервер.
18	Уровень сетевых приложений, протоколы передачи файлов, гипертекстовой поддержки, почтовые службы.	Технология World Wide Web, HTTP. FTP. E-mail.
19	Система и служба доменных имен.	Домены Internet, DNS, DNS серверы.

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование	Виды занятий (часов)

п/п	раздела дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
1	Информация. Сигналы. Данные	6		4	1	11
2	Общая характеристика базовой информационной					
	технологии	4		2	1	7
3	Кодирование информации	4		2	2	8
4	Представление информации в ЭВМ	4		12	4	20
5	Основы алгоритмизации	2		6	2	10
6	История развития ЭВМ. Понятие и основные виды архитектуры ЭВМ	4		2	1	7
7	Состав и назначение основных элементов персонального компьютера	2		2	2	6
8	Процессоры	4		2	2	8
9	Основная и вспомогательная память	6		2	2	10
10	Устройства ввода/вывода данных	4		2	2	8
11	Понятие системного и служебного (сервисного) программного обеспечения	4		2	2	8
12	Программные средства реализации информационных процессов	4		14	1	19
13	Файловая структура операционных систем. Операции с файлами	4		2	2	8
14	Архитектура вычислительных систем	2		2	2	6

15	Стек сетевых протоколов ISO OSI и протоколы Internet	4	4	2	10
16	IP-адресация. IP- маршрутизация.	4	2	2	8
17	Программирование сетевых взаимодействий, socket интерфейс	4	4	2	10
18	Уровень сетевых приложений, протоколы передачи файлов, гипертекстовой поддержки, почтовые службы.	4	4	2	10
19	Система и служба доменных имен.	2	2	2	6
	Итого	34	16	58	108

14. Методические указания для обучающихся по освоению дисциплины

В процессе преподавания дисциплины используются такие виды учебной работы, как лекции, лабораторные занятия, различные виды а также самостоятельной работы обучающихся. На лекциях рассказывается теоретический материал, на лабораторных занятиях решаются примеры по теоретическому материалу, прочитанному на лекциях.

При изучении дисциплины «Информатика» обучающимся следует внимательно слушать и конспектировать материал, излагаемый на аудиторных занятиях. Для его понимания и качественного усвоения рекомендуется следующая последовательность действий.

- 1. После каждой лекции студентам рекомендуется подробно разобрать прочитанный теоретический материал, выучить все определения, разобрать примеры, решенные на лекции. Перед следующей лекций обязательно повторить материал предыдущей лекции.
- 2. Перед лабораторным занятием обязательно повторить лекционный материал. После лабораторного занятия еще раз разобрать решенные на этом занятии примеры, после чего приступить к выполнению домашнего задания. Если при решении примеров, заданных на дом, возникнут вопросы, обязательно задать на следующем лабораторном занятии или в присутственный час преподавателю.
- 3. При подготовке к лабораторным занятиям повторить основные понятия по темам, изучить примеры. Решая задачи, предварительно понять, какой теоретический материал нужно использовать. Наметить план решения, попробовать на его основе решить практические задачи.
- 4. В трёх предыдущих пунктах кроме конспектов использовать также литературу по дисциплине.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Таненбаум, Эндрю. Архитектура компьютера = Structured computer organization / Э. Таненбаум ; [пер. с англ. Ю. Гороховского, Д. Шинтякова] .— 5-е изд. — СПб. [и др.] : Питер, 2009 .— 843 с. : ил., табл. + 1 СD .— (Классика Computer Science) .— Парал. тит. л. англ. — Алф. указ. : с.825-843.
2	Олифер , Виктор Григорьевич. Основы компьютерных сетей : [учебное пособие] / В. Олифер, Н. Олифер .— СПб. [и др.] : Питер, 2009 .— 350 с. : ил. — (Учебное пособие) .— Библиогр. : с.349-350.
3	Завгородний, Михаил Григорьевич. Компьютерные сети [Электронный ресурс]: лабораторный практикум / М.Г. Завгородний, С.П. Майорова; Воронеж. гос. ун-т; [ред. В.В. Юргелас]. — Электрон. текстовые дан. — Воронеж: Издательский дом ВГУ, 2014. — Загл. с титул. экрана. — Свободный доступ из интрасети ВГУ. — Текстовые файлы. — Windows 2000; Adobe Acrobat Reader. — <url:http: elib="" m14-134.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
4	Информатика : базовый курс : [учебное пособие для студ. втузов] / ; под ред. С.В. Симоновича .— 2- е изд. — СПб. [и др.] : Питер , 2010 .— 639 с. : ил. — (Учебник для вузов) .— Библиогр.: с.631-632 .— Алф. указ. : с. 633-639 .— ISBN 978-5-94723-752-8.

б) дополнительная литература:

№ п/п	Источник
5	Информатика: учебник для студ. вузов, обуч. по специальности 080801 "Прикладная информатика" и др. экон. специальностям / СПетерб. гос. ун-т экономики и финансов (СПбГУЭФ); под ред. В.В. Трофимова. — М.: Юрайт, 2011. — 910, [1] с.: ил., табл. — (Основы наук). — Библиогр. в конце разд. — ISBN 978-5-9916-1022-3. — ISBN 978-5-9692-1052-3.
6	Таненбаум, Эндрю. Компьютерные cemu = Computer Networks / Э. Таненбаум ; [пер. с англ. В. Шрага] .— 4-е изд. — СПб. [и др.] : Питер, 2009 .— 991 с. : ил., табл. — (Классика Computer Science) .— Библиогр.: с.952-970 .— Алф. указ.: с.971-991.
7	Олифер В. Г. Компьютерные сети. Принципы, технологии, протоколы: [учебное пособие для студ. вузов, обуч. по направлению "Информатика и вычисл. техника" и по специальностям "Вычисл. машины, комплексы, системы и сети", "Автоматизированные машины, комплексы, системы м сети", "Програм. обеспечение вычисл. техники и автоматизир. систем"] / В. Олифер, Н. Олифер.— 4-е изд. — Санкт-Петербург: Питер, 2012.— 943 с.

в) информационные электронно-образовательные ресурсы:

№ п/п	Интернет
1	

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Информатика: учебник для студ. вузов, обуч. по специальности 080801 "Прикладная информатика" и др. экон. специальностям / СПетерб. гос. ун-т экономики и финансов (СПбГУЭФ); под ред. В.В. Трофимова. — М.: Юрайт, 2011. — 910, [1] с.: ил., табл. — (Основы наук). — Библиогр. в конце разд. — ISBN 978-5-9916-1022-3. — ISBN 978-5-9692-1052-3.
2	Таненбаум, Эндрю. Компьютерные сети = Computer Networks / Э. Таненбаум ; [пер. с англ. В. Шрага] .— 4-е изд. — СПб. [и др.] : Питер, 2009 .— 991 с. : ил., табл. — (Классика Computer Science) .— Библиогр.: с.952-970 .— Алф. указ.: с.971-991.
3	Олифер В. Г. Компьютерные сети. Принципы, технологии, протоколы: [учебное пособие для студ. вузов, обуч. по направлению "Информатика и вычисл. техника" и по специальностям "Вычисл. машины, комплексы, системы и сети", "Автоматизированные машины, комплексы, системы м сети", "Програм. обеспечение вычисл. техники и автоматизир. систем"] / В. Олифер, Н. Олифер. — 4-е изд. — Санкт-Петербург: Питер, 2012. — 943 с.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий. При проведении занятий в дистанционной форме используются технические и информационные ресурсы Образовательного портала "Электронный университет ВГУ" (https://edu.vsu.ru), базирующегося на системе дистанционного обучения Moodle, развернутой в университете, а также другие доступные ресурсы в сети Интернет.

Ubuntu (бесплатное и/или свободное ПО, лицензия: https://ubuntu.com/download/desktop);

LibreOffice (GNU Lesser General Public License (LGPL), бесплатное и/или свободное ПО, лицензия: https://ru.libreoffice.org/about-us/license/);

Denwer (бесплатное и/или свободное ПО, лицензия: http://www.denwer.ru/faq/other.html);

Mozilla Firefox (Mozilla Public License (MPL), бесплатное и/или свободное ПО, лицензия: https://www.mozilla.org/en-US/MPL/);

18. Материально-техническое обеспечение дисциплины:

Специализированная мебель

Специализированная мебель, маркерная доска, персональные компьютеры

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Информация. Сигналы. Данные	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа, презентация
2.	Общая характеристика базовой информационной технологии	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
3.	Кодирование информации	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
4.	Представление информации в ЭВМ	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа

5	Основы алгоритмизации	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа, презентация
6	История развития ЭВМ. Понятие и основные виды архитектуры ЭВМ	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
7	Состав и назначение основных элементов персонального компьютера	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
8	Процессоры	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
9	Основная и вспомогательная память	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа, презентация
10	Устройства ввода/вывода данных	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
11	Понятие системного и служебного (сервисного) программного обеспечения	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
12	Программные средства реализации информационных процессов	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
13	Файловая структура операционных систем. Операции с файлами	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа, презентация
14	Архитектура вычислительных систем	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
15	Стек сетевых протоколов ISO OSI и протоколы Internet	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
16	IP-адресация. IP- маршрутизация.	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
17	Программирование сетевых взаимодействий, socket интерфейс	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа, презентация
18	Уровень сетевых приложений, протоколы передачи файлов, гипертекстовой	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа

	поддержки, почтовые службы.			
19	Система и служба доменных имен.	ОПК-1	ОПК-1.1	Домашнее задание, контрольная работа
Промежуточная аттестация форма контроля –экзамен			Перечень вопросов к экзамену	

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: домашнее задание, контрольная работа.

Примеры контрольных работ:

Контрольная работа № 1

- 1. RAID-массивы.
- 2. Эталонная модель OSI
- 3. Преобразуйте число 6.125 в формат стандарта IEEE с одинарной точностью. Результаты представьте в восьми шестнадцатеричных разрядах.

	Информация.	Сигналы.	Данные.	Представление	информации	В
ЭВМ						

Контрольная работа № 2

Задание №1.

Для записи текста использовался 256-символьный алфавит. Каждая страница содержит 30 строк по 70 символов в строке. Какой объем информации содержат 5 страниц текста?

Задание №2.

Перевести числа -14 и 16 в восьмибитную двоичную систему со знаком, дополнение до 1, дополнение до 2, систему со смещением на 128.

Задание №3.

Перевести число -1/8 в шестнадцатиричную систему стандарта IEEE 754 с одинарной точностью.

20.2 Промежуточная аттестация Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Собеседование по экзаменационным билетам

Билеты к экзамену формируются из заданий аналогичных задания контрольных работ.

Перечень вопросов к экзамену:

Шина PCI-е и PCI

Форматы представления графической информации.

Форматы представления видеоинформации.

Архитектура процессоров ARM

Архитектура современных графических процессоров

RAID-массивы.

Эталонная модель OSI

При оценивании используется следующая шкала:

Критерии оценивания компетенций	Уровень сформированн ости компетенций	Шкала оценок
Обучающийся демонстрирует полное соответствие знаний, умений, навыков приведенным в таблицах показателям, свободно оперирует приобретенными знаниями, умениями, применяет их при решении практических задач.	Повышенный уровень	отлично
Обучающийся демонстрирует соответствие знаний, умений, навыков приведенным в таблицах показателям, но допускает незначительные ошибки, неточности, испытывает затруднения при решении практических задач.	Базовый уровень	хорошо

Обучающийся демонстрирует неполное	Пороговый	удовлетворит
соответствие знаний, умений, навыков приведенным	уровень	0.51.110
в таблицах показателям, допускает значительные		ельно
ошибки при решении практических задач.		
Обучающийся демонстрирует явное несоответствие	_	неудовлетво
знаний, умений, навыков приведенным в таблицах показателям.		рительно

20.3 Фонд оценочных средств сформированности компетенций студентов, рекомендуемый для проведения диагностических работ

Задания открытого типа:

1. В группе N = 32 студентов. За контрольную работу по математике получено $N_5 = 8$ пятерок, $N_4 = 16$ четверок, $N_3 = 6$ троек и $N_2 = 2$ двойки. Какое количество в битах информации в сообщении о том, что Андреев получил двойку?

Ответ: 4

Решение. Информацию H можно найти по формуле $H = -\log_2 p$, где p – вероятность запрашиваемого события. В нашем случае p = 2/32 = 1/16. H = 4.

2. В группе N = 32 студентов. За контрольную работу по математике получено $N_5 = 8$ пятерок, $N_4 = 16$ четверок, $N_3 = 6$ троек и $N_2 = 2$ двойка. Какое количество в битах информации в сообщении о том, что Андреев получил пятерку?

Ответ: 2

Решение. Информацию H можно найти по формуле $H = -\log_2 p$, где p – вероятность запрашиваемого события. В нашем случае p = 8/32 = 1/4. H = 2.

3. В алфавите некоторого языка всего три буквы: А, Б и В. Все слова, записанные на этом языке, состоят из 4 букв. Какой максимальный словарный запас может быть у этого языка?

Ответ: 81

Решение. Максимальный словарный запас — это количество уникальных слов, которые можно получить из заданного набора букв. В данном случае набор состоит из трёх букв, и для формирования слова используется каждая из букв ровно 4 раза. Таким образом, количество слов можно посчитать по формуле $n = 3^4 = 81$

4. В алфавите некоторого языка всего две буквы: А и Б. Все слова, записанные на этом языке, состоят из 4 букв. Какой максимальный словарный запас может быть у этого языка?

Ответ: 16

Решение. Максимальный словарный запас — это количество уникальных слов, которые можно получить из заданного набора букв. В данном случае набор состоит из двух букв, и для формирования слова используется каждая из букв ровно 4 раза. Таким образом, количество слов можно посчитать по формуле n = $2^4 = 16$

5. В алфавите некоторого языка всего две буквы: А и Б. Все слова, записанные на этом языке, состоят из 7 букв. Какой максимальный словарный запас может быть у этого языка?

Ответ: 128

Решение. Максимальный словарный запас — это количество уникальных слов, которые можно получить из заданного набора букв. В данном случае набор состоит из двух букв, и для формирования слова используется каждая из букв ровно 7 раз. Таким образом, количество слов можно посчитать по формуле n = $2^7 = 128$

6. В школьной библиотеке 4 стеллажа с книгами. На каждом стеллаже 8 полок. Библиотекарь сообщил Пете, что нужная ему книга находится на пятом стеллаже на третьей сверху полке. Какое количество информации в битах библиотекарь передал Пете?

Ответ: 5

Решение. Для передачи информации о местонахождении книги библиотекарь дал два числа: номер стеллажа и номер полки. Каждое из чисел можно закодировать в двоичном виде используя логарифм по основанию 2 от количества возможных вариантов. Для номера стеллажа, у нас 4 возможных варианта, поэтому его можно закодировать в 2 бита (2 в степени 2 равно 4). Для номера полки, у нас 8 вариантов, поэтому его можно закодировать в 3 бита (2 в степени 3 равно 8). Итого, чтобы передать всю информацию, нам нужно 5 бит: 2 бита для номера стеллажа + 3 бита для номера полки = 5 бит

7. В школьной библиотеке 16 стеллажей с книгами. На каждом стеллаже 4 полок. Библиотекарь сообщил Пете, что нужная ему книга находится на пятом стеллаже на третьей сверху полке. Какое количество информации в битах библиотекарь передал Пете?

Ответ: 6

Решение. Для передачи информации о местонахождении книги библиотекарь дал два числа: номер стеллажа и номер полки. Каждое из чисел можно закодировать в двоичном виде используя логарифм по основанию 2 от количества возможных вариантов. Для номера стеллажа, у нас 16 возможных вариантов, поэтому его можно закодировать в 4 бита (2 в степени 4 равно 16). Для номера полки, у нас 4 варианта, поэтому его можно закодировать в 2 бита (2 в степени 2 равно 4). Итого, чтобы передать всю информацию, нам нужно 6 бит: 4 бита для номера стеллажа + 2 бита для номера полки = 6 бит

8. При угадывании целого числа в некотором диапазоне было получено 4 бита информации. Сколько чисел содержит этот диапазон?

Ответ: 16

Решение. Количество чисел, которое содержит диапазон, можно определить, зная количество бит информации и используя формулу: $n=2^b$, где b - количество бит информации, n - количество чисел в диапазоне. В данном случае, из условия задачи, b=4. Тогда: $n=2^4=16$

9. При угадывании целого числа в некотором диапазоне было получено 7 бит информации. Сколько чисел содержит этот диапазон?

Ответ: 128

Решение. Количество чисел, которое содержит диапазон, можно определить, зная количество бит информации и используя формулу: $n=2^b$, где b - количество бит информации, n - количество чисел в диапазоне. В данном случае, из условия задачи, b=7. Тогда: $n=2^7=128$

10. В матрице строки и столбцы нумеруются с единицы. При помощи матричного кодирования зашифровано сообщение. Найдите номер строки и номер столбца с ошибкой и в ответе запишите сумму этих номеров.

1	1	1	0
0	1	1	0
1	0	0	1
0	1	0	

Ответ: 3

Решение. Для решения этой задачи нужно проверить каждую строку и каждый столбец на четность с помощью сложения. Если в какой-то строке или столбце ошибка, то результат сложения будет нечётным числом.

1	1	1	0
0	1	1	0
1	0	0	1
0	1	0	

Таким образом ошибка в первой строке и втором столбце

11. В матрице строки и столбцы нумеруются с единицы. При помощи матричного кодирования зашифровано сообщение. Найдите номер строки и номер столбца с ошибкой и в ответе запишите сумму этих номеров.

0	0	1	0
0	1	1	0
1	0	0	1
0	1	0	

Ответ: 2

Решение. Для решения этой задачи нужно проверить каждую строку и каждый столбец на четность с помощью сложения. Если в какой-то строке или столбце ошибка, то результат сложения будет нечётным числом.

0	0	1	0
0	1	1	0
1	0	0	1
0	1	0	

Таким образом ошибка в первой строке и первом столбце

12. Найдите кодовое расстояние между векторами (0,0,0,0,0) и (1, 0, 1, 1, 0).

Ответ: 3

Решение. Для нахождения кодового расстояния между данными векторами их нужно попарно сравнить и посчитать количество различающихся элементов на соответствующих позициях. На 1-ой позиции у первого вектора стоит 0, а на 1-ой позиции у второго вектора стоит 1 - на этой позиции векторы отличаются. На 2-ой позиции элементы векторов совпадают. На 3-ей позиции у первого вектора стоит 0, а у второго - 1 - отличие. На 4-ой позиции у первого вектора стоит 0, а у второго - 1 - отличие. На 5-ой позиции элементы совпадают.

Таким образом, между данными векторами 1, 3 и 4-ая позиции отличаются, а на 2-ой и 5-ой позициях совпадают. Значит, их кодовое расстояние равно 3.

13. Найдите кодовое расстояние между векторами (0,0,1,1,1) и (1, 0, 1, 0, 0).

Ответ: 3

Решение. Для нахождения кодового расстояния между данными векторами их нужно попарно сравнить и посчитать количество различающихся элементов на соответствующих позициях. На 1-ой позиции у первого вектора стоит 0, а на 1-ой позиции у второго вектора стоит 1 - на этой позиции векторы отличаются. На 2-ой позиции элементы векторов совпадают. На 3-ей позиции у первого вектора стоит 1, а у второго - 1 - совпадение. На 4-ой позиции и на 5-ой позиции у векторов стоят различные элементы. Таким образом, между данными векторами 1, 4 и 5-ая позиции отличаются, а на 2-ой и 3-ей совпадают. Значит, их кодовое расстояние равно 3.

14. Найдите кодовое расстояние между векторами (0,0,1,1,1) и (1, 0, 1, 0, 1).

Ответ: 2

Решение. Для нахождения кодового расстояния между данными векторами их нужно попарно сравнить и посчитать количество различающихся элементов на соответствующих позициях. На 1-ой позиции у первого вектора стоит 0, а на 1-ой позиции у второго вектора стоит 1 - на этой позиции векторы отличаются. На 2-ой позиции элементы векторов совпадают. На 3-ей позиции у первого вектора стоит 1, а у второго - 1 - совпадение. На 4-ой позиции у векторов стоят различные элементы, а на 5 совпадают. Таким образом, между данными векторами 1, 4 позиции отличаются, а на 2-ой, 3-ей и 4-ой совпадают. Значит, их кодовое расстояние равно 2.

15. Найдите кодовое расстояние между векторами (0,0,1,1,1) и (0, 0, 1, 0, 1).

Ответ: 1

Решение. Для нахождения кодового расстояния между данными векторами их нужно попарно сравнить и посчитать количество различающихся элементов на соответствующих позициях. На 4-ой позиции у векторов стоят различные элементы, а во всех остальных совпадают3начит, их кодовое расстояние равно 1.

16. Для записи числа выделяется восемь разрядов. Переведите -9 в систему обратный код

Ответ: 11110110

Решение. Для перевода отрицательного числа -9 в систему обратный код нужно выполнить следующие шаги:

- 1. Представляем абсолютное значение числа 9 в двоичном виде: 9 = 00001001.
- 2. Инвертируем все биты полученного двоичного числа (меняем 0 на 1 и наоборот): 11110110.
- 17. Для записи числа выделяется восемь разрядов. Переведите -9 в систему дополнительный код.

Ответ: 11110111

Решение. Для перевода отрицательного числа -9 в систему дополнительных кодов нужно выполнить следующие шаги:

- 1. Представляем абсолютное значение числа 9 в двоичном виде: 9 = 00001001.
- 2. Инвертируем все биты полученного двоичного числа (меняем 0 на 1 и наоборот): 11110110.
- 3. Добавляем к инвертированному числу единицу (получаем дополнительный код): 11110111.

Задания закрытого типа:

- 1. Установите соответствия
 - 1. Аксиологический подход
- а) Данный подход исходит из ценности практической значимости информации, то есть качественных характеристик, значимых в социальной системе.
- 2. Семантический подход
- b) В качестве количественной характеристики сообщения можно взять минимальное число внутренних состояний машины, требующихся для воспроизведения данного сообщения.
- 3. Алгоритмический подход
- с) Для измерения смыслового содержания информации наибольшее признание получила тезаурусная мера.

OTBET: 1. \leftrightarrow a.; 2. \leftrightarrow c.; 3. \leftrightarrow b.

Решение. 1. Аксиологический подход - данное определение соответствует варианту а), так как в аксиологическом подходе основное внимание уделяется ценности и социальной значимости информации. 2. Семантический подход - данное определение соответствует варианту с), так как семантический подход фокусируется на смысловом содержании информации. 3. Алгоритмический подход - данное определение соответствует варианту b), так как в алгоритмическом подходе для измерения количественной характеристики сообщения используется минимальное число внутренних состояний машины, требуемых для воспроизведения данного сообщения.

2. Установите соответствия

- 1. Количество измерений амплитуды в секунду
- 2. число битов, отводимых под запись значения амплитуды
- 3. Растровая графика
- 4. Векторная графика

- а) изображение представляется в виде отдельных точек пикселей
- b) глубина кодирования звука
- с) частота дискретизации
- d) предусматривает использование геометрических примитивов

OTBET: $1. \leftrightarrow c$; $2. \leftrightarrow b$.; $3. \leftrightarrow a$; $4. \leftrightarrow d$.

Решение. 1. Количество измерений амплитуды в секунду - соответствует определению "частота дискретизации", вариант с). 2. Число битов, отводимых под запись значения амплитуды - соответствует определению "глубина кодирования звука", вариант b).3. Растровая графика - соответствует определению "изображение представляется в виде отдельных точек - пикселей", вариант а). 4. Векторная графика - соответствует определению "предусматривает использование геометрических примитивов", вариант d).

- 3 Если параметр может принимать любое значение в пределах некоторого интервала, то он называется
 - 1. аналоговым
 - 2. дискретным
 - 3. оцифрованным
 - 4. квантованным

Ответ: 1

Решение. Аналоговый параметр представляет собой непрерывную величину, которая может изменяться в пределах определенного диапазона значений. Например, если рассматривать температуру воздуха, то она может принимать любое значение на протяжении всего диапазона температур от -273,15 °C до +∞.

4. Установите соответствие между шестнадцатеричным числом и его десятичным представлением.

1. A	a) 15
2. F	b) 10
3. C	c) 11
4. B	d) 12

Ответ: 1. \leftrightarrow b; 2. \leftrightarrow a.; 3. \leftrightarrow d; 4. \leftrightarrow c.

Решение. Шестнадцатеричная система счисления использует 16 символов: цифры от 0 до 9 и буквы от A до F, где A соответствует значению 10, B соответствует значению 11 и т.д. до F, который соответствует значению 15..

5. Выберите выделяемое число бит для каждого выражения..

1.	Экспонента			С	a) 1
_	одинарной т				
2.	Экспонента двойной точ			С	b) 52
2	Знак	ность	Ю		a) 22
ა.	энак				c) 23
4.	Мантисса			С	d) 11
	одинарной т				
5.	Мантисса в	систе	ме с двойн	ОЙ	e) 8
	точностью				

OTBET: 1. \leftrightarrow e; 2. \leftrightarrow d.; 3. \leftrightarrow a; 4. \leftrightarrow c; 5. \leftrightarrow b.

Решение. - Экспонента - это часть числа с плавающей точкой, которая определяет порядок числа. Для одинарной точности в стандарте IEEE 754 экспонента занимает 8 бит (отведенных для формирования числа в коде). Для двойной точности экспонента занимает 11 бит. Знак числа с плавающей точкой занимает 1 бит, определяет знак числа. Мантисса - это часть числа с плавающей точкой, которая представляет собой значение мантиссы. В стандарте IEEE 754 для одинарной точности мантисса занимает 23 бита, а для двойной точности мантисса занимает 52 бита.

6. Верно ли, что неравномерный код может быть однозначно декодирован, если никакой из кодов не совпадает с префиксом какого-либо иного более длинного кода?

Ответ: верно

Решение. Да, верно. Неравномерный код, который удовлетворяет свойству префиксности, может быть однозначно декодирован, если никакой из кодов не совпадает с префиксом какого-либо иного более длинного кода. Это условие называется условием Фано.

7. Верно ли, что материальным носителем информации может быть звуковая волна?

Ответ: верно

Решение. Верно. Материальным носителем информации может быть звуковая волна. Звуковая волна — это колебание воздушного давления, которое может передаваться по воздуху от одного источника к другому. Звук может содержать информацию, которая может быть записана и прочитана с помощью микрофона и динамика. На практике звуковые записи широко используются для хранения музыки, речи и других аудиофайлов, и они могут быть использованы как материальный носитель информации.

8. Верно ли, что теория информации имеет дело со смыслом информации и с ее количеством?

Ответ: неверно

Решение. Неверно. Теория информации в первую очередь занимается измерением и передачей информации, а не ее смыслом. Теория информации описывает, как информация может быть закодирована, передана и получена без потерь. Эта наука также изучает количество информации, содержащееся в сообщении, и как быстро оно может быть передано.

9. Верно ли, что построение кода Шеннона–Фано начинается с переупорядочивания исходной кодовой таблицы в порядке возрастания вероятностей?

Ответ: верно

Решение. Да, Построение Шеннона-Фано верно. кода начинается С переупорядочивания исходной таблицы кодов В порядке возрастания вероятностей.

10. Верно ли, что построение кода Хаффмана начинается с переупорядочивания исходной кодовой таблицы в порядке возрастания вероятностей?

Ответ: верно

Решение. Да, верно. Построение кода Хаффмана начинается с переупорядочивания исходной таблицы кодов в порядке возрастания вероятностей.

11. Верно ли, что код Хаффмана является самым экономичным из всех возможных для заданного алфавита и набора вероятностей?

Ответ: верно

Решение. Да, верно. Код Хаффмана является самым экономичным из всех возможных для заданного алфавита и набора вероятностей.

12. Верно ли, что код Шеннона-Фано является самым экономичным из всех возможных для заданного алфавита и набора вероятностей?

Ответ: неверно

Решение. Нет, не совсем верно. Хотя код Шеннона-Фано обеспечивает неравномерное присваивание двоичных кодов символам алфавита на основе их вероятностей встречаемости, он не всегда является самым экономичным из всех возможных для заданного алфавита и набора вероятностей. Код Хаффмана более эффективным алгоритмом сжатия данных, чем код Шеннона-Фано

- 13. Если параметр может принимать любое значение в пределах некоторого интервала, то он называется
 - 1) непрерывным
 - 2) дискретным
 - 3) оцифрованным
 - 4) квантованным

Ответ: непрерывным

Решение. непрерывным. Непрерывный параметр - это параметр, который может принимать любое значение в пределах некоторого диапазона значений. Этот диапазон может быть конечным или бесконечным и может включать в себя как дробные, так и целые значения. Примерами непрерывных параметров являются время, длина, вес, температура и другие физические характеристики.

- 14. Какие типы команд используются в архитектуре ЭВМ?
 - 1) Арифметические и логические
 - 2) Строковые и текстовые
 - 3) Графические и мультимедийные
 - 4) Аналоговые и цифровые

Ответ: 1)

Решение. В архитектуре ЭВМ используются разные типы команд, которые относятся к различным категориям. Одним из наиболее распространенных типов является арифметический, который включает команды для выполнения математических операций, таких как сложение, вычитание, умножение и деление. Другой распространенный тип команд - это логический, который включает команды для выполнения логических операций, таких как И, ИЛИ и НЕ. В архитектуре ЭВМ также используются другие типы команд, такие как команды для чтения и записи данных в память, команды для управления потоком выполнения программы и команды для взаимодействия с устройствами ввода-вывода. Однако варианты ответов 2, 3 и 4 не являются типами команд в архитектуре ЭВМ.

- 15. Каким образом происходит передача данных между компонентами компьютера?
 - 1) Посредством шин
 - 2) Посредством портов
 - 3) Посредством интерфейсов
 - 4) Посредством протоколов

Ответ: 1)

Решение. Передача данных между компонентами компьютера осуществляется посредством шин. Шина - это набор линий связи, которые соединяют различные компоненты компьютера, обеспечивая передачу данных и управляющих сигналов между ними. Шина может быть внутренней (обычно между процессором, памятью

и контроллерами ввода-вывода) или внешней (между компьютером и внешними устройствами, такими как принтер, сканер, флэш-накопитель).

Задания раздела 20.3 рекомендуются к использованию при проведении диагностических работ с целью оценки остаточных результатов освоения данной дисциплины (знаний, умений, навыков).