МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВПО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

МиКМ

проф. А.В. Ковалев 07.03.2024г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.02 Теория разрушения

1. Шифр и наименование направления подготовки / специальности:

01.04.03 Механика и математическое моделирование

1. Шифр и наименование направления подготовки / специальности:

01.04.03 Механика и математическое моделирование

- 2. Профиль подготовки: Прикладная механика и компьютерное моделирование
- 3. Квалификация (степень) выпускника: магистр
- 4. Форма обучения: Очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** Механики и компьютерного моделирования
- 6. Составители программы:

Минаева Надежда Витальевна, доктор физ-мат. наук, профессор, факультет ПММ, кафедра МиКМ, <u>nminaeva@yandex.ru</u>

7. Рекомендована: НМС факультета ПММ протокол №8 от 27.02.2024

8. Учебный год: 2024- 2025 Семестр(ы): 2

9. Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целями освоения дисциплины «Теория разрушения» являются: изучение фундаментальных понятий механики разрушения, методов решения задач и интерпретации полученных результатов.

Задачи учебной дисциплины: овладеть теоретическим и практическим основам механики разрушения, сформировать навыки решения задач хрупкого разрушения, упругопластического разрушения, усталостного разрушения, разрушения с позиции теории устойчивости; научить студента анализировать и корректно интерпретировать полученные результаты.

10. Место учебной дисциплины в структуре ООП: Дисциплина относится к вариативной части блока Б1. При изучении дисциплины необходимы знания основных математических дисциплин, теоретической механики, основ механики сплошной среды и теории упругости. Она является предшествующей для таких дисциплин: Моделирование физических процессов в системах компьютерной математики, Асимптотические методы в механике, Компьютерный практикум по механике, Математические модели механики композитов.

11. Компетенции обучающегося, формируемые в результате освоения дисциплины:

Код	Название	Код(ы)	Индикатор(ы)	Планируемые результаты
				ř
ПК-1	Название компетенции Способен планировать работу и выбирать методы решения исследовательск их задач адекватно поставленным целям с учетом широкого понимания профессиональн ой области и/или области обучения, в том числе на междисциплинар ном уровне	Код(ы) ПК-1.2	Индикатор(ы) Анализирует и обрабатывает информацию по тематике исследования в выбранной области наук на основании широкого понимания профессиональной области и/или области обучения, в том числе на междисциплинарном уровне. Выбирает экспериментальные и расчетно-теоретические методы решения поставленной задачи, исходя из имеющихся материальных и временных ресурсов.	обучения Знать: основные методы поиска, сбора и обработки информации по современным проблем теории разрушения Уметь: анализировать и обрабатывать информацию

ПК-3	Способен	ПК-3.1	Обрабатывает	Знать: методы обработки и
	обрабатывать,		полученные данные с	анализа результатов
	интерпретироват		использованием	исследований в области
	ь и оформлять		современных методов	механики разрушений
	результаты		анализа информации.	
	проведенных			Уметь: проанализировать и
	исследований в			адекватно
	выбранной			интерпретировать
	области науки			полученные результаты
		ПК-3.2	Критически анализирует	Уметь: интерпретировать и
			полученные результаты и	оформлять полученные
			интерпретирует в	результаты
			контексте выбранной	
			области	Владеть: навыками
			профессиональной и/или	критического анализа
			научной сферы.	результатов исследований
				в области механики
				разрушений

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — 3/108

Форма промежуточной аттестации(зачет/экзамен) _____ экзамен ___

13. Трудоемкость по видам учебной работы

			Трудоемкость		
Вид учебной работы			По семестрам		
,	элд у тостой рассты				
Контактная работа	Контактная работа		32		
	лекции	16	16		
В том числе:	практические				
	лабораторные	16	16		
Самостоятельная работа		40	40		
Промежуточная аттестация (для экзамена)		36	36		
Итого:		108	108		

13.1. Содержание разделов дисциплины

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн- курса, ЭУМК
		1. Лекции	
1.	Механика хрупкого разрушения	Критерий Гриффитса, Напряженное состояние тела с трещиной. КИН и методы его расчета.	Teopия разрушения https://edu.vsu.ru/cour se/view.php?id=6284
2.	Механика упругопластического разрушения	Учет пластических деформаций, поправка Ирвина, пластическая зона у вершины трещины, модель трещины с тонкой пластической зоной.	Теория разрушения https://edu.vsu.ru/cour se/view.php?id=6284
3.	Усталостное разрушение	Усталостное разрушение. Основы физики прочности. Дефекты кристаллической структуры. Инвариантный J-интеграл.	Teopия разрушения https://edu.vsu.ru/cour se/view.php?id=6284

		Критерий разрушения	
4.	Разрушение с позиции теории устойчивости	Модель линейной пластической зоны. КИН. Разрушение при циклических и динамических нагрузках.	Teopия разрушения https://edu.vsu.ru/cour se/view.php?id=6284
		2. Практические занятия	
1.	Механика хрупкого разрушения	Критерий Гриффитса, Напряженное состояние тела с трещиной. КИН и методы его расчета.	Teopия разрушения https://edu.vsu.ru/cour se/view.php?id=6284
2.	Механика упругопластического разрушения	Учет пластических деформаций, поправка Ирвина, пластическая зона у вершины трещины, модель трещины с тонкой пластической зоной.	Teopия разрушения https://edu.vsu.ru/cour se/view.php?id=6284
3.	Усталостное разрушение	Усталостное разрушение. Основы физики прочности. Дефекты кристаллической структуры. Инвариантный J-интеграл. Критерий разрушения	Teopия разрушения https://edu.vsu.ru/cour se/view.php?id=6284
4.	Разрушение с позиции теории устойчивости	Модель линейной пластической зоны. КИН. Разрушение при циклических и динамических нагрузках.	Teopия разрушения https://edu.vsu.ru/cour se/view.php?id=6284

13.2 Междисциплинарные связи

Nº	Наименование дисциплин учебного плана, с которым	№ разделов дисциплины рабочей
п/п	организована взаимосвязь дисциплины рабочей	программы, связанных с
	программы	указанными дисциплинами
1.	Моделирование физических процессов в системах компьютерной математики	2,3,4.
2.	Асимптотические методы в механике	1 -3
3.	Компьютерный практикум по механике	1, 4
4.	Математические модели механики композитов	1 - 4

13.3 Разделы дисциплины и виды занятий

Nº	Цаимоноронио разпола писниллини	лекции	Лаб.	CPC	Всего
п/п	Наименование раздела дисциплины		занятия		
1.	Механика хрупкого разрушения	4	4	10	18
2.	Механика упругопластического разрушения	4	4	10	18
3.	Усталостное разрушение	4	4	10	18
4.	Разрушение с позиции теории устойчивости	4	4	10	18

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: указание наиболее сложных разделов, работа с конспектами лекций, презентационным материалом, рекомендации по выполнению курсовой работы, по организации самостоятельной работы по дисциплине и др)

Освоение дисциплины «Теория разрушения» включает лекционные занятия, лабораторные занятия и самостоятельную работу обучающихся.

На первом занятии студент получает информацию для доступа к комплексу учебнометодических материалов.

Лекционные занятия посвящены рассмотрению теоретических основ механики разрушений, ключевых принципов, базовых понятий, стандартов и методологий.

Лабораторные занятия предназначены для формирования умений и навыков, закрепленных компетенций по ОПОП. Они организовываются в виде работы над практикоориентированными заданиями, домашние задания, собеседования, выполнение реферата.

Самостоятельная работа студентов включает в себя проработку учебного материала лекций, разбор заданий, подготовку реферата.

Для успешного освоения дисциплины рекомендуется подробно конспектировать лекционный материал, просматривать основную и дополнительную литературу по соответствующей теме, чтобы систематизировать изучаемый материал.

Промежуточная аттестация. В течение семестра обучающимся предлагается выполнить практикоориентированные, домашние задания, реферат по темам из п.20.1. Промежуточная аттестация проводится в форме собеседования на основе вопросов из п.20.2.

При использовании дистанционных образовательных технологий и электронного обучения следует выполнять все указания преподавателя по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Матвиенко, Ю.Г. Модели и критерии механики разрушения: ???? монография / Матвиенко Ю.Г. — Москва: Физматлит, 2006. — 328 с. — Модели и критерии механики разрушения [Электронный ресурс] / Матвиенко Ю.Г М.: ФИЗМАТЛИТ, 2006. — ISBN 21-0669-4.— <url:https: book="" isbn5922106694.html="" www.studentlibrary.ru="">.</url:https:>
2	Левин, В.А. Избранные нелинейные задачи механики разрушения: ???? учебное пособие / Левин В.А., Морозов Е.М., Матвиенко Ю.Г. — Москва: Физматлит, 2004. — 408 с. — Избранные нелинейные задачи механики разрушения [Электронный ресурс] / Левин В.А., Морозов Е.М., Матвиенко Ю.Г М.: ФИЗМАТЛИТ, 2004. — ISBN 21-0514-0 .— <url:https: book="" isbn5922105140.html="" www.studentlibrary.ru="">.</url:https:>

б) дополнительная литература:

№ п/п	Источник
3	Рахматулин, Х.А. Прочность и разрушение при кратковременных нагрузках: ???? учебное пособие / Рахматулин Х.А., Шемякин Е.И., Демьянов Ю.А., Звягин А.В. — Москва: Логос, 2017 .— 624 с. — Прочность и разрушение при кратковременных нагрузках [Электронный ресурс] / Х.А. Рахматулин, Е.И. Шемякин, Ю.А. Демьянов, А.В. Звягин - М.: Логос, 2017. — ISBN 5-98704-278.— <url:https: book="" isbn978598704278.html="" www.studentlibrary.ru="">.</url:https:>
4	Волков, И.А. Уравнения состояния вязкоупругопластических сред с повреждениями: ???? монография / Волков И.А., Коротких Ю.Г. — Москва: Физматлит, 2008. — 424 с. — Уравнения состояния вязкоупругопластических сред с повреждениями [Электронный ресурс] / Волков И.А., Коротких Ю. Г М.: ФИЗМАТЛИТ, 2008. — ISBN 5-9221-0965-9 .— <url:https: book="" isbn9785922109659.html="" www.studentlibrary.ru="">.</url:https:>

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
1.	Электронная библиотека ВГУ <u>www.lib.vsu.ru</u>
2.	ЭБС «Консультант студента»
3.	ЭБС «Лань»
4.	Теория разрушения https://edu.vsu.ru/course/view.php?id=6284

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных), курсовых работ и др.)

№ п/п	Источник
1.	Матвиенко, Ю.Г. Модели и критерии механики разрушения : ???? монография / Матвиенко Ю.Г. — Москва : Физматлит, 2006 .— 328 с. — Модели и критерии механики разрушения [Электронный ресурс] / Матвиенко Ю.Г М. : ФИЗМАТЛИТ, 2006. — ISBN 21-0669-4 .— <url: book="" https:="" isbn5922106694.html="" www.studentlibrary.ru="">.</url:>
2.	Рахматулин, Х.А. Прочность и разрушение при кратковременных нагрузках : ???? учебное пособие / Рахматулин Х.А., Шемякин Е.И., Демьянов Ю.А., Звягин А.В. — Москва : Логос, 2017 .— 624 с. — Прочность и разрушение при кратковременных нагрузках [Электронный ресурс] / Х.А. Рахматулин, Е.И. Шемякин, Ю.А. Демьянов, А.В. Звягин - М. : Логос, 2017. — ISBN 5-98704-278 .— <url:https: book="" isbn978598704278.html="" www.studentlibrary.ru="">.</url:https:>
3.	Теория разрушения https://edu.vsu.ru/course/view.php?id=6284

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

При реализации дисциплины могут проводиться различные типы лекций (вводная, обзорная и т.д.), применяться дистанционные образовательные технологии в части освоения лекционного материала, самостоятельной работы по дисциплине или отдельным ее разделам.

При реализации дисциплины используются следующие образовательные технологии: логическое построение дисциплины, обозначение теоретического и практического компонентов в учебном материале. Применяются разные типы лекций (вводная, обзорная, информационная, проблемная).

Информационные технологии для реализации учебной дисциплины:

- технологии синхронного и асинхронного взаимодействия студентов и преподавателя посредством служб (сервисов) по пересылке и получению электронных сообщений, в том числе, по сети Интернет а также другие Интернетресурсы, приведенные в п.15в.;
- сервис электронной почты для оперативной связи преподавателя и студентов.

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий, для организации самостоятельной работы обучающихся используется онлайн-курс, размещенный на платформе Электронного университета ВГУ (LMS moodle), а также другие Интернет-ресурсы, приведенные в п.15в.

18. Материально-техническое обеспечение дисциплины: Лекционная аудитория должна быть оборудована учебной мебелью, компьютером, мультимедийным оборудованием (проектор, экран, средства звуковоспроизведения), допускается переносное оборудование. Лабораторные занятия должны проводиться в специализированной аудитории, оснащенной учебной мебелью и персональными компьютерами с доступом в сеть Интернет (компьютерные классы, студии), мультимедийным оборудованием (мультимедийный проектор, экран, средства звуковоспроизведения), Число рабочих мест в аудитории должно быть таким, чтобы обеспечивалась индивидуальная работа студента на отдельном персональном компьютере.

Для самостоятельной работы необходимы компьютерные классы, помещения, оснащенные компьютерами с доступом к сети Интернет.

Программное обеспечение: OC Windows 8 (10), интернет-браузер (Chrome, Яндекс.Браузер, Mozilla Firefox), ПО Adobe Reader, пакет стандартных офисных приложений для работы с документами, таблицами (MS Office, МойОфис, LibreOffice).

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Механика хрупкого разрушения	ПК-1	ПК-1.2	Собеседование
2.	Механика упругопластического разрушения	ПК-1	ПК- 1.3 ПК- 1.2	Реферат
3.	Усталостное разрушение	ПК-3	ПК- 3.1	Собеседование
Разрушение с позиции 4. теории устойчивости		ПК-3	ПК- 3.2 ПК- 3.3	Практикоориентированные задания/домашние задания
	Промежуточная аттестация форма контроля - экзамен			Перечень вопросов

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: Собеседование, Реферат, Практикоориентированные задания/домашние задания

Практикоориентированные задания/домашние задания

(наименование оценочного средства текущего контроля успеваемости)

Перечень заданий из задачников и пособий из п.16

Описание технологии проведения: Решение практикоориентированных заданий происходит в течение 1 часа 30 минут в учебной аудитории, для выполнения домашних заданий предусмотрены часы из СРС. Проверка правильности выполнения проводится путем проверки выполненных упражнений.

Оценка	Критерии оценок							
Отлично	Правильное решение задачи. Получены основные характеристики							
Онрыппо	напряжённо-деформированного состояния упругих тел.							
	Правильное решение задачи. Получены основные характеристики							
Хорошо	напряжённо-деформированного состояния упругих тел, но есть							
	некоторые ошибки.							
Удовлетворительно	Неправильное решение задачи, но верно выбран метод решения.							

I I	11
Неудовлетворительно	I Неправильное решение задачи, неверно выбран метод решения.

Реферат

(наименование оценочного средства текущего контроля успеваемости)

Темы рефератов (примерные)

- 1. Решение Вестергарда плоской задачи теории упругости (первое) (с указанием перехода от действительного к комплексному представлению решений)
- 2. Решение Вестергарда плоской задачи теории упругости (второе) (с указанием перехода от действительного к комплексному представлению решений)
- 3. Антиплоская деформация
- 4. Растяжение плоскости с тонким разрезом (равномерное двухосное растяжение)
- 5. Растяжение плоскости с тонким разрезом (давление, распределенное по поверхности разреза)
- 6. Растяжение плоскости с тонким разрезом (расклинивающая сила по берегам разреза на бесконечности усилий нет)
- 7. Бесконечная пластина единичной толщины, растягиваемая на бесконечности однородным напряжением р_0. Действие подкреп. ребер заменяется 4-мя симметрично расположенными сосредоточенными силами
- 8. Бесконечная пластина единичной толщины, подкрепленная парой проволочных петель, в которых отсутствуют нач. напряжения и которые продеты в просверленные в пластине отверстия
- 9. Одноосное растяжение напряжением р неограниченной плоскости, содержащей одиночную прямолинейую трещину
- 10. Неограниченная плоскость , ослабленная одиночной прямолинейной трещиной, в полости которой действует давление р
- 11. Неограниченная плоскость с полубесконечным разрезом вдоль действительной полуоси, находящаяся под действем нестационарного поля
- 12. Неограниченная плоскость с полубесконечным разрезом вдоль действительной полуоси, находящаяся под действем температурного поля
- 13. Плоская задача термоупругости для внешней части прямолинейного разреза, на участке которого в начальный момент времени возникает постоянная темпеатура

Реферат представляется в распечатанном виде.

Оценка	Критерии оценок						
Отлично	Полное, подробное, логические верно построенное изложение по выбранной теме.						
Хорошо Полное, но неподробное, логические верно построенное излож выбранной теме.							
Удовлетворительно	Неполное, логические верно построенное изложение по выбранной теме.						
Неудовлетворительно Отсутствие реферата по выбранной теме							

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Собеседование по экзаменационным билетам

(наименование оценочного средства промежуточной аттестации)

1. Основные понятия.

- 2. Виды трещин.
- 3. Задача Гриффитса.
- 4. Критерий Гриффитса
- 5. Критерий Ирвина.
- 6. Интегральный принцип теории трещин.
- 7. Плоская задача для тела с прямолинейной трещиной, растягиваемого парой сосредоточенных сил.
- 8. Пример учета пластической зоны с помощью энерг. критерия для идеальноупругого тела.
- 9. Модифицированный критерий Гриффитса.
- 10. Модель Леонова-Панасюка.
- 11. δ-к критерий.
- 12. Решение задачи Гриффитса на основе б-к модели.
- 13. Подход Новожилова.
- 14. Дискретный критерий.
- 15. Критерий Мак-Клинтока.
- 16. Критерий Си.
- 17. КИН (пластич. поправка Ирвина).
- 18. Метод сечений для расчета КИН (пример).
- 19. Ј-интеграл.

Описание технологии проведения. Средство контроля, организованное как специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Экзамен проводится на основе КИМ, составленных на основе вопросов для подготовки к экзамену.

Оценка	Критерии оценок						
Отлично	Знание основных соотношений теории разрушений, теорем, вариационных принципов. Умение классифицировать основные задачи упругости. Владение основными методами решения задач. Умение получить основные характеристики напряжённо-деформированного состояния для частных случаев нагружения упругих тел.						
Хорошо	Знание основных соотношений теории разрушений, теорем, вариационных принципов. Умение классифицировать основные задачи теории разрушений. Владение основными методами решения задач.						
Удовлетворительно	Знание основных соотношений теории разрушений, теорем, вариационных принципов. Умение классифицировать основные задачи теории разрушений.						
Неудовлетворительно	Нетвёрдое знание основных соотношений теории разрушений, теорем, вариационных принципов. Неумение классифицировать основные задачи теории разрушений. Плохое владение методами решения задач.						

20.3 Фонд оценочных средств сформированности компетенций студентов, рекомендуемый для проведения диагностических работ:

1) закрытые задания (тестовые, средний уровень сложности):

ЗАДАНИЕ 1. Пластичность — свойство твердых тел приобретать остаточные деформации

<mark>а) да</mark>

б) нет

ЗАДАНИЕ 2. Верно ли, что способность тел восстанавливать свою начальную форму и размеры при устранения внешнего воздействия называется упругостью?

<mark>a) да</mark>

б) нет

ЗАДАНИЕ 3. Верно ли, что если тело деформируется путём постепенного медленного увеличения нагрузки, то при сохранении равновесия температур в теле и окружающей среде процесс формирования является изотермическим?

<mark>a) да</mark>

б) нет

ЗАДАНИЕ 4. Верно ли, что если деформирование тела происходит без поглощения или потери тепла, то процесс деформирования является адиабатическим?

a) да

б) нет

ЗАДАНИЕ	5.	При	определении	напряженного	И	деформируемого	состояния	тела	искомыми
величинам	ИЯЕ	зляютс	ся:						
□ компоне	енть	ы векто	ора перемещен	ий $\pmb{U_i}$					
□ компоне	энть	и тенз	ора деформаці	ий е іј					
□ компоне	энть	и тенз	ора напряжени	й δ_{ij}					
<mark>а) да</mark>				-					
б) нет									

ЗАДАНИЕ 6. Известно, что равенство $\delta_{ij} = C_{ijkl}e_{kl}$ представляет собой закон Гука (обобщенный), C_{ijkl} называется:

а) матрица упругих констант и содержит 81 компоненту

- б) матрица жёстких констант и содержит 56 компонент
- в) матрица жёсткопластических констант и содержит 100 компонент

ЗАДАНИЕ 7. При определении напряженно-деформированного состояния жёсткопластического тела искомыми величинами являются:

- компоненты вектора скорости перемещений V_i
- компоненты тензора скорости пластической деформации $arepsilon_{ij} = rac{d e_i}{d f}$
- компоненты тензора напряжений δ_{ij}

<mark>a) да</mark>

б) нет

ЗАДАНИЕ 8. Верно ли, что в простейшем случае изменение механических свойств рассматриваемого материала характеризуется некоторой комбинацией напряжений форме $f_v(\delta_{ij}) = 0, (p=1,...,n)$

<mark>a) да</mark>

б) нет

2)открытые задания (тестовые, повышенный уровень сложности):

ЗАДАНИЕ 1. Записать полную систему уравнений, описывающих поведение однородного, идеального, несжимаемого жёстко-пластического тела (с условием пластичности в общем виде)

ЗАДАНИЕ 2. Записать полную систему уравнений, описывающих поведение однородного, идеального, несжимаемого жёстко-пластического тела (с условием Трески)

ЗАДАНИЕ 3. Записать полную систему уравнений, описывающих поведение однородного, идеального, несжимаемого жёстко-пластического тела (с условием Ивлева)

ЗАДАНИЕ 4. Записать полную систему уравнений, описывающих поведение однородного, идеального, несжимаемого жёстко-пластического тела (с условием Мизеса)

Задания раздела 20.3 рекомендуются к использованию при проведении диагностических работ с целью оценки остаточных знаний по результатам освоения данной дисциплины.