Минобрнауки России

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

Сирота Александр Анатольевич

Кафедра технологий обработки и защиты информации

23.04.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.11 Искусственный интеллект

1. Код и наименование направления подготовки/специальности:

09.04.02 Информационные системы и технологии

2. Профиль подготовки/специализация:

Анализ и синтез информационных систем, Информационные технологии в менеджменте, Информационные технологии и компьютерные науки для цифровой экономики, Мобильные приложения и компьютерные игры, Системы прикладного искусственного интеллекта

3. Квалификация (степень) выпускника:

Магистратура

4. Форма обучения:

Очная

5. Кафедра, отвечающая за реализацию дисциплины:

Кафедра технологий обработки и защиты информации

6. Составители программы:

Гаршина Вероника Викторовна, к.т.н., доцент

7. Рекомендована:

№5 05.03.2024

8. Учебный год:

2024-2025

9. Цели и задачи учебной дисциплины:

Изучение теоретических основ и принципов построения информационных систем основанных на представлении, хранении и обработки знаний, реализующих интеллектуальны вывод на знаниях; получение практических навыков разработки интеллектуальных информационных программных систем; получение профессиональных компетенций в области современных технологий разработки систем искусственного интеллекта.

Основные задачи дисциплины:

обучение студентов методам формального представления и описания знаний и принципам реализации интеллектуального вывода;

освоение современных теорий построения систем искусственного интеллекта, реализующих нечеткий вывод на неполных и ненадежных знаниях;

обучение студентов методам и алгоритмам, применяемым для построения систем поддержки принятия решений, экспертных систем, систем обработки естественно-языковой информации;

овладение практическими навыками разработки и применения интеллектуальных информационных технологий.

10. Место учебной дисциплины в структуре ООП:

дисциплина относится к дисциплинам части базового модуля учебного плана.

Для успешного освоения необходимо предварительное изучение следующих дисциплин: дискретная математика, теория вероятностей и математическая статистика, введение в программирование, системы управление базами данных, языки программирования, методы программирования, алгоритмы и структуры данных.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников) и индикаторами их достижения:

Код и название компетенции	Код и название индикатора компетенции	Знания, умения, навыки
ОПК-7 Способен разрабатывать и применять математические модели процессов и объектов при решении задач анализа и синтеза распределенных информационных систем и систем поддержки принятия решений;	ОПК-7.1 Знает принципы построения математических моделей процессов и объектов при решении задач анализа и синтеза распределенных информационных систем и систем поддержки принятия решений	Знает математические и алгоритмические подходы, применяемые к построению систем поддержки принятия решений, экспертных систем, систем интеллектуальной обработки данных разных типов.
ОПК-7 Способен разрабатывать и применять математические модели процессов и объектов при решении задач анализа и синтеза распределенных информационных систем и систем поддержки принятия решений;	ОПК-7.2 Умеет разрабатывать и применять математические модели процессов и объектов при решении задач анализа и синтеза распределенных информационных систем и систем поддержки принятия решений	Умеет использовать современные программные среды моделирования и разработки, прикладное программное обеспечение, программные библиотеки для разработки интеллектуальных систем.
ОПК-7 Способен разрабатывать и применять математические модели процессов и объектов при решении задач анализа и синтеза распределенных информационных систем и систем поддержки принятия решений;	ОПК-7.3 Имеет навыки построения математически моделей для реализации успешного функционирования распределенных информационных систем и систем поддержки принятия решений	Владеет навыками обработки экспертных оценок и анализа оценок групп экспертов; навыками описания выявленных закономерностей в виде логических выражений на языках логического программирования и различных спецификаций.

Код и название компетенции	Код и название индикатора компетенции	Знания, умения, навыки
ОПК-4 Способен применять на практике новые научные принципы и методы исследований;	ОПК-4.1 Знает новые научные принципы и методы исследований	Знает теоретические основы и принципы построения информационных систем, основанных на представлении, хранении и обработки знаний и реализующих интеллектуальный вывод на знаниях, современные технологии разработки систем искусственного интеллекта.
ОПК-4 Способен применять на практике новые научные принципы и методы исследований;	ОПК-4.2 Умеет применять на практике новые научные принципы и методы исследований	Умеет проектировать интеллектуальные информационные системы на языках логического программирования; строить модели нечеткого вывода в прикладных программных пакетах.
ОПК-4 Способен применять на практике новые научные принципы и методы исследований;	ОПК-4.3 Иметь навыки применения новых научных принципов и методов исследования для решения профессиональных задач	Владеет навыками разработки и тестирования и интеграции интеллектуальных информационных систем в другие пректы.

12. Объем дисциплины в зачетных единицах/час:

5/180

Форма промежуточной аттестации:

Экзамен

13. Трудоемкость по видам учебной работы

Вид учебной работы	Семестр 2	Всего
Аудиторные занятия	48	48
Лекционные занятия	16	16
Практические занятия		0
Лабораторные занятия	32	32
Самостоятельная работа	96	96
Курсовая работа		0
Промежуточная аттестация	36	36
Часы на контроль	36	36
Всего	180	180

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
1	Формальные модели представления знаний в искусственном интеллекте	Лекции по разделу 1. Основные положения ИИ. Основные этапы становления ИИ как науки. Предметные области, связанные с задачами ИИ. Основные направления современных исследований в области ИИ. Представления знаний и алгоритмы вывода заключений в искусственном интеллекте для продукционной, фреймовой и сетевой моделей. Лабораторные занятия по разделу 1. Логическая модель на основе предикатов первого порядка. Вывод на основе метода резолюций. Логическое программирования - Пролог. Основные принципы декларативного программирования. Управление выводом в Прологе. Отрицание, отсечение, поиск с возвратом - backtraking. 2. Списки в Прологе. 3. Деревья в Прологе	Создан электронный онлайн - курс, размещены материалы к лекции и лабораторным работам.
2	Экспертные системы, методы экспертного оценивания и обработки экспертных оценок.	Лекция по разделу 2. Экспертное оценивание как процесс измерения: объект, показатель (признак), процедура сравнения, шкалы, ранжирование, парное сравнение, непосредственная оценка. Методы анализа оценок групп экспертов. Лабораторные занятия по разделу. 4. Экспертные системы, системы поддержки принятия решений: назначение и особенности, цели создания, классификация. Обобщенная структура ЭС. Основные этапы разработки ЭС. Разработка ЭС в Prolog.	Создан электронный онлайн - курс, размещены материалы к лекции и лабораторным работам.

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
3	Разработка интеллектуальных систем, основанных на нечетких знаниях.	Лекции по разделу 3. Выводы на ненадежных знаниях. Виды нечеткости знаний. Байесовские сети доверия. 4. Представление нечетких знаний на основе аппарата нечетких множеств. Основные принципы реализации нечеткого вывода и нечеткого управления. Лабораторные занятия по разделу 5. Разработка системы нечеткого вывода и нечеткого управленияв модуле FuzzyLogic пакета Matlab. 6. Разработка Байесовской сети доверия и диаграмм влияния в системе Hugin Expert.	Создан электронный онлайн - курс, размещены материалы к лекции и лабораторным работам.
4	Онтологическое моделирование семантики предметной области знаний	Лекции по разделу 5. Онтологическое моделирование предметной области для задач семантического анализа в интеллектуальной системе. Элементы онтологии: экземпляры, концепты, атрибуты, отношения. Сложные классы. Типы онтологий: верхнего уровня (СҮС, SUMO, Sowa's ontology), предметных областей, прикладные онтологии. Языки описания онтологий. Стандарт OWL, Resource Description Framework (RDF), RDF Schema, язык запросов к знаниям SPERQL. Инструментальные средства проектирования онтологий. Реализация семантического анализа информации в интеллектуальных системах на основе онтологий. Лабораторные занятия по разделу 7. Разработка онтологии предметной области в системе Protege. 8. Работа с GraphDB - базой данных NOSQL для семантических графов: хранение, организация и управление контентом в форме семантически обогащенных интеллектуальных данных.	Создан электронный онлайн - курс, размещены материалы к лекции и лабораторным работам.

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
5	Мультиагентные интеллектуальные системы	Лекции по разделу 6. Агентно-ориентированный подход к проектированию интеллектуальных ИС. Агенты. Типы агентных моделей и архитектур: делиберативные, реактивные, гибридные. Требования и стандартизация проектирования АОС. Стандартные свойства агентов. Агенты с состояниями. Методологии построения агентноориентированных систем. MAS DK, Gaia, Tropos. Сообщества агентов. Протоколы взаимодействия: КQML. KIF. Языки программирования агентов. Программные платформы разработки агентноориентированных систем. Работа агентов с онтологиями. Сети потребностей и возможностей для построения самоорганизующихся систем, основанных на мультиагентном подходе к моделированию. Модели межагентного взаимодействия. Инструменты разработки МАС. Применение мультиагентного подхода к задачам управления ресурсами предприятий. Примеры использования мультиагентного подхода к моделированию сложными информационными системами. Лабораторные занятия по разделу 9. Разработка мультиагентной системы в AnyLogic.	Создан электронный онлайн - курс, размещены материалы к лекции и лабораторным работам.

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
õ	Природные вычисления	Лекции по разделу 7. Понятие природных (биоинспирированных) вычислений. Источники появления, классификация методов, приложения в моделировании и разработке систем искусственного интеллекта. Принципы эволюционного моделирования, направления: эволюционные стратегии, эволюционное программирование, генетические алгоритмы и генетическое программирование. Прикладные задачи. Понятие эмерджентного искусственного интеллекта. Роевой искусственный интеллект (swarm intelligence): особенности функционирования, системное формальное описание. Роевые модели. Метод роя частиц. Модель поведения стаи птиц Рейнолдса. Методы роевой оптимизации. Бактериальный поиск. Пчелиный поиск. Приложение методов в разработке систем искусственного интеллекта. 8. Клеточный автомат – понятие, формальное определение, виды клеточных автоматов: одномерный и двумерный. Задание клеточного автомата (правила в табличной и графической форме). Исследование клеточных автоматов. Коды Вольфрама. Двумерные автоматы. Окрестности фон Неймана и Мура. Самовоспроизведение в клеточных автоматов: ассинхронные, недетерминированные, блочные. Примеры моделирования на клеточных автоматах. Игра - Жизнь. Вариации клеточных автоматов: ассинхронные, недетерминированные, блочные. Примеры моделирования на клеточных автоматах. Игра - Жизнь. Вариации клеточных артоматах. Генетические алгоритмы - основные понятия, формальное представление алгоритма. Отбор, скрещивание, мутации. Реализация операции скрещивания, типы кроссоверов (одноточечный, духточечный). Кроссоверов (одноточечный, духточечный). Кроссоверов (одноточечный, духточечный). Кроссоверов оточечный в процессе эволюции, решаемые на основе ГА. Примеры. Операция мутации. Виды мутаций. Критерии останова процесса отбора и эволюции. Основные задачи исследования поколений в процессе эволюции, решаемые на основе ГА. Применение ГА в искусственном интеллекте. Лабораторные занятия по разделу	Создан электронный онлайн - курс, размещены материалы к лекции и лабораторным работам.
		10. Моделирование поведения групп объектов	
		на основе роевых алгоритмов в NetLogo.	

клеточных автоматов в NetLogo.

13.2. Темы (разделы) дисциплины и виды занятий

№ п/п	Наименование темы (раздела)	Лекционные занятия	Практические занятия	Лабораторные занятия	Самостоятельная работа	Всего
1	Формальные модели представления знаний в искусственном интеллекте	2		6	10	18
2	Экспертные системы, методы экспертного оценивания и обработки экспертных оценок.	2		2	16	20
3	Разработка интеллектуальных систем, основанных на нечетких знаниях.	4		4	20	28
4	Онтологическое моделирование семантики предметной области знаний	2		8	20	30
5	Мультиагентные интеллектуальные системы	2		4	20	26
6	Природные вычисления	4		8	10	22
		16	0	32	96	144

14. Методические указания для обучающихся по освоению дисциплины

- 1. При изучении дисциплины рекомендуется использовать следующие средства: рекомендуемую основную и дополнительную литературу;
 - методические указания и пособия;
 - контрольные задания для закрепления теоретического материала;
 - электронные версии учебников и методических указаний для выполнения лабораторно практических работ (при необходимости материалы рассылаются по электронной почте).
- 2. Для максимального усвоения дисциплины рекомендуется проведение письменного опроса (тестирование, решение задач) студентов по материалам лекций и лабораторных работ.

- Подборка вопросов для тестирования осуществляется на основе изученного теоретического материала. Такой подход позволяет повысить мотивацию студентов при конспектировании лекционного материала.
- 3. При проведении лабораторных занятий обеспечивается максимальная степень соответствия с материалом лекционных занятий и осуществляется экспериментальная проверка методов, алгоритмов и технологий, применяемых в интеллектуальной обработке информации, излагаемых в рамках лекций.
- 4. При переходе на дистанционный режим обучения для создания электронных курсов, чтения лекций онлайн и проведения лабораторно- практических занятий используется информационные ресурсы Образовательного портала "Электронный университет ВГУ (https:\\edu.vsu.ru), базирующегося на системе дистанционного обучения Moodle, развернутой в университете.
- 5. При использовании дистанционных образовательных технологий и электронного обучения обучающиеся должны выполнять все указания преподавателей, вовремя подключаться к онлайн занятиям, ответственно подходить к заданиям для самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

№ ⊓/⊓	Источник
1	Гаврилова, Т. А. Инженерия знаний. Модели и методы: учебник для вузов / Т. А. Гаврилова, Д. В. Кудрявцев, Д. И. Муромцев. — 3-е изд., стер. — Санкт-Петербург: Лань, 2020. — 324 с. — ISBN 978-5-8114-6473-9. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/147337 (дата обращения: 01.05.2024). — Режим доступа: для авториз. пользователей.
2	Гаврилова, И. В. Основы искусственного интеллекта: учебное пособие / И. В. Гаврилова, О. Е. Масленникова. — 3-е изд., стер. — Москва: ФЛИНТА, 2019. — 283 с. — ISBN 978-5-9765-1602-1. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/115839 (дата обращения: 01.05.2024). — Режим доступа: для авториз. пользователей.
3	Нечеткое моделирование и управление в технических системах : учебное пособие для вузов / Ю. И. Кудинов, Ф. Ф. Пащенко, И. Ю. Кудинов, А. Ф. Пащенко. — Санкт-Петербург : Лань, 2020. — 208 с. — ISBN 978-5-8114-5499-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/152627
4	Муромцев, Д. И. Онтологический инжиниринг знаний в системе Protege : учебнометодическое пособие / Д. И. Муромцев. — Санкт-Петербург : НИУ ИТМО, 2007. — 62 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/43539 (дата обращения: 03.07.2024). — Режим доступа: для авториз. пользователей.
5	Замолоцких, В. С. Применение теории графов для анализа социальных сетей : учебное пособие / В. С. Замолоцких, В. Г. Сидоренко. — Москва : РУТ (МИИТ), 2020. — 74 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/175887 (дата обращения: 01.05.2024). — Режим доступа: для авториз. пользователей

б) дополнительная литература:

№ п/п	Источник
1	Остроух, А. В. Интеллектуальные информационные системы и технологии : монография / А. В. Остроух, А. Б. Николаев. — Санкт-Петербург : Лань, 2019. — 308 с. — ISBN 978-5-8114-3409-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/115518 (дата обращения: 01.05.2024). — Режим доступа: для авториз. пользователей.
2	Хултен Д. Разработка интеллектуальных систем: введение в технологию машинного обучения: практическое пособие/Д. Хултен Москва: ДМК Пресс, 2019284с. :ил. Библиогр. в конце разд. — ISBN 978-5-97060-760-2. ЭБС ВГУ «Университетская библиотека online»
3	Джонс, М. Т. Программирование искусственного интеллекта в приложениях / М. Т. Джонс. — Москва : ДМК Пресс, 2011. — 312 с. — ISBN 978-5-94074-746-8. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/1244 (дата обращения: 01.05.2024). — Режим доступа: для авториз. пользователей.
4	Мартин, О. Байесовский анализ на Python: руководство / О. Мартин; перевод с английского А. В. Снастина. — Москва: ДМК Пресс, 2020. — 340 с. — ISBN 978-5-97060-768-8. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/140585 (дата обращения: 01.05.2024). — Режим доступа: для авториз. пользователей.
5	Добров Б.В. Онтологии и тезаурусы: модели, инструменты, приложения: учебное пособие / Б.В. Добров, В.В. Иванов, Н.В. Лукашевич, В.Д. Соловьев. / - М.: Интернет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2009.
6	Мезенцев, К. Н. Мультиагентное моделирование в среде NetLogo : учебное пособие / К. Н. Мезенцев. — Санкт-Петербург : Лань, 2015. — 176 с. — ISBN 978-5-8114-1933-3. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/68458 (дата обращения:01.05.2024). — Режим доступа: для авториз. пользователей.
7	Колокольцов, В. Н. Математическое моделирование многоагентных систем конкуренции и кооперации (Теория игр для всех) [Электронный ресурс] / Колокольцов В. Н., Малафеев О. А. — 1-е изд. — Санкт-Петербург: Лань, 2012. — 624 с. — Книга из коллекции Лань - Математика. — ISBN 978-5-8114-1276-1. — .
8	Братко И. Алгоритмы искусственного интеллекта на языке PROLOG./ И.Братко / - М. : Вильямс ,2007.
9	Цуканова Н.И. Логическое программирование на языке Visual Prolog. /Н.И.Цуканова/ - М: Горячая Линия - Телеком, 2008.
10	Люггер Дж. Ф. Искусственный интеллект: стратегии и методы решения сложных проблем / Дж. Ф. Люггер./ - М. : Вильямс , 2003.

№ п/п	Источник
11	Рассел С. Искусственный интеллект: современный подход / С.Рассел, П.Норвиг / - М.: Вильямс , 2006
12	Яцало, Б. И. Нечеткие интеллектуальные системы: Конспект лекций: учебное пособие / Б. И. Яцало. — Москва: НИЯУ МИФИ, 2020. — 132 с. — ISBN 978-5-7262-2713-9. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/175436 (дата обращения: 01.05.2024). — Режим доступа: для авториз. пользователей.
13	Леденева Т.М. Обработка нечеткой информации / Т.М. Леденева. – Воронеж : Воронежский государственный университет, 2006. – 233 с.
14	Боярский, К. К. Введение в компьютерную лингвистику: учебное пособие / К. К. Боярский. — Санкт-Петербург: НИУ ИТМО, 2013. — 72 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/70822 (дата обращения: 01.05.2024). — Режим доступа: для авториз. пользователей.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
1	Электронный каталог Научной библиотеки Воронежского государственного университета (http://www.lib.vsu.ru/).
2	Образовательный портал «Электронный университет BГУ» (https://edu.vsu.ru/)
3	ЭБС «Университетская библиотека online» - Контракт №3010 06/11 23 от 26.12.2023 (с 26.12.2023 по 25.12.2024)
4	ЭБС «Консультант студента» – Лицензионный договор №980КС/12-2023 / 3010-06/01-24 от 24.01.2024 с 24.01.2024 по 11. 01.2025)
5	ЭБС Лань - Лицензионный договор №3010, (с 01/03/2024 по 28.02.2025) 06/02 24 от 13.02.2024 (с дополнительным соглашением №1 от 14.03.2024)
6	Электронная библиотека ВГУ, Договор №ДС-208 от 01.02.2021 с ООО «ЦКБ «БИБКОМ» и ООО «Агентство «Книга-Сервис» о создании Электронной библиотеки ВГУ, (с 01.02.2021 по 31.01.2027)
7	ЭБС ВООК.ru, Договор №3010 15/983 23 от 20.12.2023, (с 01.02.2024 по 31.01.2025).

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Мезенцев, К. Н. Мультиагентное моделирование в среде NetLogo: учебное пособие / К. Н. Мезенцев. — Санкт-Петербург: Лань, 2015. — 176 с. — ISBN 978-5-8114-1933-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/68458 (дата обращения: 01.05.2024). — Режим доступа: для авториз. пользователей.
2	Леоненков А.В. Нечеткое моделирование в среде MATLAB и fuzzyTECH./ А.В. Леоненков /- СПб.:БХВ-Петербург, 2003736 с.
3	Сергиенко, М.А. Разработка экспертных систем на языке CLIPS / В.В. Гаршина, М.А. Сергиенко .— Воронеж : Издательский дом ВГУ, 2014 .— 108 с. — 108 с— <url:http: elib="" m14-90.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
4	Ресурсы Образовательного портала "Электронный университет ВГУ (https:\\edu.vsu.ru)

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

- 1. ПО Microsoft в рамках подписки "Imagine/Azure Dev Tools for Teaching", договор №3010-16/96-18 от 29 декабря 2018г.
- 2. ПО MATLAB Classroom ver. 7.0, 10 конкурентных бессрочных лицензий на каждый, компоненты: Matlab, Simulink, Stateflow, 1 тулбокс, N 21127/VRN3 от 30.09.2011 (за счет проекта EK TEMPUS/ERAMIS).
- 3. ПО Матлаб в рамках подписки Университетская лицензия на программный комплекс для ЭВМ MathWorks MATLAB Campus-Wide Suite по договору 3010-16/118-21 от 27.12.2021 (до 01.2025).
- 4. При проведении занятий в дистанционном режиме обучения используются технические и информационные ресурсы Образовательного портала "Электронный университет ВГУ (https:\\edu.vsu.ru), базирующегося на системе дистанционного обучения Moodle, развернутой в университете, а также другие доступные ресурсы сети Интернет.
- 5. ПО Hugin Expert. Демо-версия Hugin Lite.
- 6. ПО Редактор онтологий и фреймворк для построения баз знаний Protege. Свободнораспространяемое ПО.
- 7. NOSQL графовая БД GraphDB. Свободно- распространяемое ПО.
- 8. ПО NetLogo среда имитационного моделирования. Свободно-распространяемое ПО.
- 9. ПО SWI-Prolog. Свободная лицензия (GNU).

18. Материально-техническое обеспечение дисциплины:

1. 394018, г. Воронеж, площадь Университетская, д. 1, корпус 1а, аудитория 292

Учебная аудитория: специализированная мебель, компьютер преподавателя Pentium-G3420-3,2ГГц, монитор с ЖК 17", мультимедийный проектор, экран. Система для видеоконференций Logitech ConferenceCam Group и ноутбук 15.6" FHD Lenovo V155-15API ПО: ОС Windows v.7, 8, 10, Набор утилит (архиваторы, файл-менеджеры), LibreOffice v.5-7, Foxit PDF Reader/ Специализированная мебель: доска меловая 1 шт., столы 31 шт., стулья 64 шт.; выход в Интернет, доступ к фондам учебно-методической документации и электронным

изданиям.

2. Компьютерный класс (один из №1-4 корп. 1а, ауд. № 382-385), Учебная аудитория: специализированная мебель, персональные компьютеры на базе i5-9600КF-3,7ГГц, мониторы ЖК 24′′ (16 шт.), специализированная мебель: доска маркерная 1 шт., столы 16 шт., стулья 33 шт.; доступ к фондам учебно-методической документации и электронным изданиям, доступ к электронным библиотечным системам, выход в Интернет.ПО: ОС Windows v.7, 8, 10, Набор утилит (архиваторы, файл-менеджеры), LibreOffice v.5-7, Foxit PDF Reader.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Разделы дисциплины (модули)	Код компетенции	Код индикатора	Оценочные средства для текущей аттестации
1	Формальные модели представления знаний в искусственном интеллекте	ОПК-7	ОПК-7.1	Устный опрос на занятиях. Контрольная работа по соответствующим разделам. Лабораторные работы 1-10
2	Экспертные системы, методы экспертного оценивания и обработки экспертных оценок	ОПК-7	ОПК-7.2	Устный опрос на занятиях. Контрольная работа по соответствующим разделам. Лабораторные работы 1-10
3	Разработка интеллектуальных систем, основанных на нечетких знаниях.	ОПК-7	ОПК-7.3	Устный опрос на занятиях. Контрольная работа по соответствующим разделам. Лабораторные работы 1-10
4	Онтологическое моделирование семантики предметной области знаний	ОПК-4	ОПК-4.1	Устный опрос на занятиях. Контрольная работа по соответствующим разделам. Лабораторные работы 1-10
5	Мультиагентные интеллектуальные системы	ОПК-4	ОПК-4.2	Устный опрос на занятиях. Контрольная работа по соответствующим разделам. Лабораторные работы 1-10
6	Природные вычисления	ОПК-4	ОПК-4.3	Устный опрос на занятиях. Контрольная работа по соответствующим разделам. Лабораторные работы 1-10

Промежуточная аттестация
Форма контроля - Экзамен
Оценочные средства для промежуточной аттестации

Перечень вопросов, практическое задание

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах устного опроса (индивидуальный опрос, фронтальная беседа) и письменных работ (контрольные, лабораторные работы). При оценивании могут использоваться количественные или качественные шкалы оценок. Текущий контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Устный опрос на занятиях;

× Контрольная работа по теоретической части курса; Лабораторные работы.

Примерный перечень оценочных средств.

№ ⊓/П	Наименование оценочного средства	Представление оценочного средства в фонде	Критерии оценки
1	2	3	4
1	Устный опрос	Вопросы по темам/разделам дисциплины	Правильный ответ – зачтено, неправильный или принципиально неточный ответ - не зачтено
2	Контрольная работа по разделам дисциплины	Теоретические вопросы по темам/разделам дисциплины	Шкала оценивания соответствует приведенной ниже
3	Лабораторная работа	Содержит 10 лабораторных заданий.	При успешно выполнении работы ставится оценка зачтено и осуществляется допуск к зачету, в противном случае ставится оценка не зачтено и обучающийся не допускается к зачету.
4	КИМ промежуточной аттестации	Каждый контрольно- измерительный материал для проведения промежуточной аттестации включает 2 вопроса для контроля знаний, умений и владений в рамках оценки уровня сформированности компетенции.	Шкалы оценивания приведены ниже

Пример задания для выполнения лабораторной работы Лабораторная работа №2 "Обработка списков в Прологе"

Цель работы: Написать программу на языке Пролог, реализующую операции по преобразованию списков для решения задачи, содержащейся в выданном варианте.

Форма контроля: отчёт в электронном виде Количество отведённых аудиторных часов: 2

Задание:

Получите у преподавателя вариант задания и напишите код, реализующий соответствующий

алгоритм обработки. Для ответа на поставленные вопросы требуется провести результаты тестирования работы программы. Составьте отчёт о проделанной работе, в котором отразите следующие пункты:

- 1. ФИО исполнителя и номер группы.
- 2. Название и цель лабораторной работы.
- 3. Номер своего варианта.

Код, написанный исполнителем.

Варианты заданий

- 1. ■Напишите программу, которая нормализует текст: удаляет из него служебные символы:%,&,*, цифры 0-9, кавычки.вводит список, просматривает список из символов и делает из него копию, отбрасывая все служебные символы, затем, выводит на печать получившийся список.
- 2. ■Напишите программу, которая вводит список символов, вводит: голову списка, хвост, по введенному символу образецу проверяет сколько раз входит данный символ в список и выводит это число.
- 3.

 | Напишите программу, которая вводит список символов, определите два предиката

четнаядлина(Список) и нечетнаядлина(Список)

таким образом, чтобы они были истинными, если их аргументом является список четной или нечетной длины соответственно. Например, список [a, b, c, d] имеет четную длину, a [a, b, c] - нечетную.

4. ■Напишите программу, которая вводит список символов, определяет его длину, если длине больше N, то преобразует его в обращенный список

определите предикат

Обращение (Список, Обращенный Список), которое обращает списки.

Например,

обращение([a, b, c, d],[d, c, b, a]).

называется палиндромом, если он читается одинаково, как слева направо, так и справа налево. Например, [м, а, д, а, м].

Определите предикат

Палиндром (Список).

Мапишите программу, которая преобразует введенный список в список со сдвигом.
 Определите предикат

сдвиг (Список1,Список2)

таким образом, чтобы *Список2* представлял собой *Список1*, "циклически сдвинутый" влево на один символ. Например,

?- сдвиг([1, 2, 3, 4,5], L1), сдвиг1(LI,L2) дает

L1 = [2, 3, 4, 5, 1]

L2 = [3, 4, 5, 1, 2]

7.

Напишите программу, которая вводит телефонный номер и преобразует его в список слов.

Определите отношение

```
перевод(Список1,Список2)
```

для перевода списка чисел от 0 до 9 в список соответствующих слов. Например,

```
перевод([3, 5, 1, 3],[три, пять, один, три])
```

Используйте в качестве вспомогательных следующие отношения:

```
означает( 0, нуль).
означает( 1, один).
```

означает (2, два).

. . .

8. ■Напишите программу, которая вводит список слов и определяет все его подмножества, терминов (удовлетворяющих условию – пишутся в кавычках ("синхрофазотрон") и их длина больше 4 символов.

Определите отношение

подмножество (Множество, Подмножество)

где *Множество и Подмножество* - два списка представляющие два множества. Желательно иметь возможность использовать это отношение не только для проверки включения одного множества в другое, но и для порождения всех возможных подмножеств заданного множества. Например:

```
?- подмножество([a, b, c], S). S = [a, b, c];
```

```
S = [b, c];
```

S = [c];

S = [];

S = [a, c];

S = [a]

9. ■Напишите программу, которая вводит список слов и разбивает его на 2 примерно равных списка, и сортирует их в порядке убывания длины слов (чтобы в начале списка месте самые длинные слова).

Определите отношение

разбиениесписка(Список, Список1, Список2)

так, чтобы оно распределяло элементы списка между двумя списками Список1 и Список2 и чтобы эти списки были примерно одинаковой длины.

Например:

разбиениесписка([a,b, c, d, e], [a, c, e], [b, d]).

10. ▶ Напишите программу, которая вводит список из слов и проводит его линеризацию.

Определите отношение

линеаризация(Список, ЛинейныйСписок)

где *Список* может быть списком списков, а *ЛинейныйСписок* - это тот же список, но "выровненный" таким образом, что элементы его подсписков составляют один линейный список. Например:

? - линеаризация([a,d, [c, d], [], [[[e]]], f, L). L = [a, b, c, d, e, f]

- 11. ► Напишите программу, которая вводит 2 списка: 1- ФИО студентов и 2-набранные ими баллы. Нужно отсортировать по баллам и сформировать новый список успевающих студентов, в котором будут ФИО и баллы.
- 12. ■Напишите программу, которая вводит 2 списка: историю измерения температуры воздуха (в градусах Цельсия) за 10 дней ноября 2019 и 10 дней ноября 2020. Данные взять из итории в Гисметео. Вычислить среднюю температуру по периоду для каждого года. Сформировать новый список, содержащий разность температур по дням. В нем найти максимальное значение по модулю.
- 13. ■Напишите программу, которая вводит список наблюдений температуры воздуха за 30 дней в шкале цельсия и пересчитывает эти значения по шкале фаренгейта, формируя новый список. Используя метод сортировки перестановка, преобразует список по дням на основе данных о температуре.
- 14. ▶ Напишите программу, которая в списке символов S1, S2, ..., Sn находит: среднюю длину слов (разделителем между словами является один или несколько пробелов) и определяет все слова, имеющие эту длину.
- 15. Напишите программу, которая вводит и обрабатывает Список целых чисел A1, A2, ..., An . Условия обработки: оставить без изменений, если он упорядочен по возрастанию или убыванию. В противном случае: каждый четный элемент списка утроить, каждый элемент, стоящий на нечетном месте и кратный четырем, удалить.
- 16. ■Напишите программу, которая вводит список слов (разделителем между словами является один или несколько пробелов) и определяет все имена собственные и их них формирует новый список.

Приведённые ниже задания рекомендуется использовать при проведении диагностических работ для оценки остаточных знаний по дисциплине

Компетенция ОПК-4

Вопросы с выбором 1-балл

- 1. Формальная модель представления знаний, представленная в виде графа и позволяющая описывать субъективное восприятие человеком или группой людей какого-либо сложного объекта, проблемы или функционирования системы, это
- 1) семантическая сеть
- 2) гипертекст
- 3) логические формулы

Ответ-1

- 2. Выберите правильные утверждения. Системы продукций включают три основных компонента (множественный выбор):
- 1) базу данных, содержащую множество фактов, описывающих предметную область
- 2) базу правил, состоящую из набора продукций правил вывода, имеющих место в предметной области
- 3) интерфейс с пользователем
- 4) управляющую структуру (УС) (программа-планировщик, интерпретатор), реализующую механизм логического вывода.

Ответы-1,2,4

- 3. В классы моделей представления знаний НЕ входят:
- 1) продукционные модели
- 2) семантические сети
- 3) формальные логические модели
- 4) формы

Ответ - 4

- 4. Выберите правильные утверждения. Для интеллектуальных информационных систем характерны следующие свойства:
- 1) отсутствие способности к самообучению
- 2) умение решать сложные плохо формализуемые задачи
- 3) адаптивность
- 4) развитые коммуникативные возможности с пользователем

Ответы-2,3,4

- 5. В теории нечетких множеств характеристическая функция называется
- 1) степенью принадлежности
- 2) функцией принадлежности
- 3) срезом
- 4) ядром

Ответ-2

- 6. К классам природных (биоинспирированных) вычислений относятся (множественный выбор)
- 1. Клеточные автоматы
- 2. Генетические алгоритмы
- 3. Объектно-ориентированное программирование
- 4. Нейросети
- 5. Методы динамического моделирования
- 6. Роевые алгоритмы

Ответы-1,2,4,6

7. При моделировании выводов на Байесовских сетях доверия (БСД) используются какие типы оценок вероятностей событий? (множественный выбор)

- 1. Функции распределения плотности вероятностей
- 2. Статистически определенные условные вероятности
- 3. Лингвистические оценки вероятности
- 4. Условные вероятности событий, субъективно оцененные экспертами

Ответы - 2.4.

- 8. Какие высказывания верны для интеллектуальных агентов? (множественный выбор) Интеллектуальный агент:
- 1. Рационален поведение управляется целями.
- 2. Проактивен способен к построению планов взаимодействия с внешней средой.
- 3. Имеет представления о внешней среде, которые могут обновляться на каждом шаге взаимодействия с внешней средой (накапливает знания и опыт).
- 4. Может отказываться от выполнения заданий.

Ответы - 1,2,3.

- 9. Агенты поддерживают разные типы коммуникаций. Какие из утверждений верны (множественный выбор):
- 1. Используют оперативную коммуникацию для обмена информацией.
- 2. Образуют социальные сети взаимодействия.
- 3. Применяют кооперацию для решения задач.
- 4. Формируют коалиции агентов.

Ответы - 1, 3, 4.

- 10. Какие высказывания об онтологиях верны? (множественный выбор)
 - 1. Онтология это точная спецификация некоторой предметной области и включает словарь концептов (терминов предметной области)
 - 2. Онтология относится к классу дискретно-событийных моделей
 - 3. Онтология поддерживает наследование атрибутов
 - 4. Онтология отражает семантику предметной области
 - 5. Онтология включает аксиомы и логические выражения, используемые для построения выводов

Ответы - 1, 3, 4, 5.

- 11. Укажите задачи, для решения которых можно использовать онтологии (множественный выбор):
 - 1. Фиксация общего разделяемого всеми экспертами знания о предметной области.
- 2. Проводить интеграцию, совместное использование и аналитику разнородных данных и

- знаний в рамках одной информационной системы.
- 3. Реализовывать вычислительные процедуры.
- 4. Проводить проектирование и разработку информационной системы на основе знаний предметной области, представленных в онтологии.
- 5. Использовать онтологию в качестве полноценного компонента информационной системы.

Ответы - 1, 2, 4, 5.

- 12. Укажите особенности онтологий предметных областей (множественный выбор):
 - 1. Охват конкретной области знаний.
 - 2. Больший объем онтологии.
 - 3. Повторное использование в разных областях знаний.
 - 4. Наличие отношений специфичных для конкретной области.

Ответы - 1, 2, 4.

- 13. Укажите причины возникновения нечеткости знаний о предметной области при проектировании базы знаний (множественный выбор)
 - 1. Неточность оценок и измерений
 - 2. Устаревание информации
 - 3. Неполнота информации о проблеме
 - 4. Лексически недетерминированные термины предметной области
 - 5. Специфика формализуемой предметной области знаний

Ответы - 1, 2, 3, 4, 5.

- 14. Укажите отличительные свойства знаний от данных (множественный выбор):
 - 1. Структурированность и связанность
 - 2. Представление в текстовом формате
 - 3. Семантическая интерпретируемость
- 4. Активность и выводимость новых заключений
- 5. Знания объективны

Ответы - 1, 3, 4.

- 15. О каком сценарии логического вывода в продукционной системе идет речь: "В систему поступило утверждение. На основании проверки наборов фактов и правил необходимо проверить его истинность или ложность". (множественный выбор)
 - 1. Прямой
- 2. Обратный

Отве	еты - 2, 3.
16.	Укажите обязательные элементы, из которых состоит продукционная система вывода (множественный выбор)
2. 3.	База знаний (база фактов + база правил) Рабочая память Механизм логического вывода Интерфейс с экспертом.
Отве	еты – 1, 2, 3.
17.	С какой главной проблемой сталкиваются при разработке базы знаний на продукционных правилах?
2.	Большой объем правил Появление конкурирующих правил (конфликтные наборы) Иерархия правил (по степени подробности)
Отве	еты – 2.
18.	Какие стратегии разрешения конфликтов в продукционных системах вывода применяются (множественный выбор)
2. 3. 4.	Назначение статических или динамических приоритетов для продукционных правил в базе правил Проверка степени специфичности правила по его длине Управление разрешением конфликта через правила мета-продукций Случайный выбор правила из конкурирующего множества Применение новых правил, не использовавшихся ранее
	еты – 1, 2, 3, 5.
-	осы с коротким ответом 2-балла Приведите формулу распространения вероятностей в Байесовских сетях доверия (БСД).
	×
×	
Отве	et:
2.	На рисунке приведена схема базовых понятий одной из Мета-онтологий. Укажите ее

3. Вывод, управляемый целью.

название.

Ответ: SUMO

3. На рисунке приведена схема базовых понятий одной из Мета-онтологий. Укажите ее название.

Ответ: SOVA

4. Запишите результат применения команды Пролога

?-append([a], L, [a, b, c]).

Ответ: L=[b, c]

Вопросы с развернутым ответом 3-балла

- 1. Дайте определение нечеткого множества, нечеткой переменной, какие допустимые операции применяются к нечетким множествам. Опишите способы построения функций принадлежности и их виды.
- 2. Задание одномерного (элементарного) клеточного автомата. Правила в табличной и графической форме. Исследование клеточных автоматов. Коды Вольфрама.
- 3. Что собой представляют и для каких задач применяются : роевые модели, метод роя частиц, модель поведения стаи птиц Рейнолдса.
- 4. Реализация операции скрещивания, типы кроссоверов (одноточечный, духточечный). Кроссовер на строках переменной длины. Шаблоны Холланда. Примеры.

Компетенция ОПК-7

Вопросы с выбором 1-балл

- 1. Укажите сильные стороны продукционных систем (множественный выбор)
- 1. Простота создания отдельных правил и понимание смысла связи правил в цепочки заключений.
- 2. Используются для хорошо структурированных предметных областей, с учетом иерархии понятий
- 3. Простота пополнения и модификации.
- 4. Единообразие структуры.
- 5. Простота механизма логического вывода.
- 6. Параллелизм и асинхронность в реализации выводов

Ответы - 1, 3, 4, 5, 6.

- 2. Укажите направления исследований в области в искусственном интеллекте (множественный выбор):
- 1. Машинное обучение.
- 2. Нейросети.
- 3. Компьютерная лингвистика.
- 4. Базы данных.
- 5. Построение систем логического вывода.

Ответы: 1,2, 3, 5, 6.

- 3. Какие модели формального представления знаний используются в искусственном интеллекте ? (множественный выбор)
- 1. Продукционные правила.
- 2. Реляционные таблицы.
- 3. Фреймы.
- 4. Семантическая сеть.
- 5. Логическая модель.
- 6. Текстовый файл.
- 7. Онтология.

Ответы: 1,3,4,5, 7,

- 4. Какие методы построения нечеткого вывода применяются в разработке интеллектуальных систем поддержки принятия решений? (множественный выбор)
- 1. Байесовские сети доверия
- 2. Сети Петри
- 3. Вывод на основе нечетких логик (Fuzzy Logic)
- 4. Марковсие цепи

Ответы: 1, 3

- 5. Укажите направления практического применения систем искусственного интеллекта (множественный выбор) :
- 1. Разработка человеко-машинных интерфейсов
- 2. Моделирование технических процессов и систем.
- 3. Моделирование сложных многоагентных систем.
- 4. Реализация вычислительных процедур.
- 5. Построение систем извлечения знаний из текстов.
- 6. Разработка экспертных систем и систем поддержки принятия решений.

Ответы:1, 2, 3, 5, 6.

- 6. Для каких решения каких задач НЕ используются генетические алгоритмы?
- 1. Настройка и обучение искусственной нейронной сети
- 2. Задачи оптимизации
- 3. Составление расписаний
- 4. Выбор игровых стратегии
- 5. Автоматическое доказательство теорем
- 6. Искусственная жизнь
- 7. Биоинформатика

Ответы: 5.

- 7. Какие этапы реализуются в генетических алгоритмах? (множественный выбор) :
- 1. Создание начальной популяции
- 2. Отбор
- 3. Скрещивание
- 4. Изменения внешней среды
- 5. Мутация
- 6. Получение новой популяции

Ответы: 1,2,3,5,6.

- 8. Особь в генетических алгоритмах представляется
- 1. Строкой из нулей и единиц, кодирующие одно из решений задачи.
- 2. Строкой текста, описывающей характеристики особи
- 3. Математической формулой, описывающей характеристики особи
- 4. Логическим высказыванием, описывающей характеристики особи

Ответы: 1.

9. Что представлено на рисунке?

- 1. Оператор мутации в ГА, реализующий инверсию
- 2. Варианты кодирования текстовых строк
- 3. Пример сравнения строк на схожесть

Ответы: 1.

28. Что представлено на рисунке?

×

- 1. Операция скрещивания строк в ГА (одноточечный оператор кроссовера)
- 2. Операция кодирования информации
- 3. Правило булевой логики

Ответы: 1.

- 29. Какие из утверждений НЕ верны для клеточных автоматов? (множественный выбор)
 - 1. представляет собой регулярно упорядоченный набор (конечный или бесконечный) простых однотипных объектов, называемых клетками.
 - 2. Новое состояние клетки определяется значениями состояний клеток, являющихся соседями данной клетки (входящих в локальную окрестность данной клетки).
 - 3. На новое состояние клетки влияет память о ее предыдущих состояниях.
 - 4. Каждая клетка обладает внутренним состоянием, при этом множество возможных состояний является дискретным и конечным.
 - 5. Клетки обновляют свои состояния одновременно (синхронно) в дискретные моменты времени.

Ответы: 3.

30. Что представлено на рисунке?

×

- 1. Решетка одномерного клеточного автомата.
- 2. Решетка двухмерного клеточного автомата.
- 3. Игровое поле

Ответы: 2.

- 31. В каких областях НЕ используется моделирование на основе клеточных автоматов? (множественный выбор)
 - 1. в физике: гидродинамика, термодинамика, электромагнитные явления.
 - 2. в эпидемиологии
 - 3. в биологии: процессы самовоспроизведения и др.
 - 4. в экологии: эрозия почв, развитие лесных пожаров и др.
 - 5. в планировании производства и логистики

6. в экономике и социологии

Ответы: 5.

- 32. Метод предназначен для решения задач многомерной непрерывной оптимизации и основан на моделировании социального поведения колоний животных, выполняющих коллективный поиск мест с наилучшими условиями существования. О каких методах идет речь? (множественный выбор)
 - 1. метод роя частиц
 - 2. алгоритмы бактериального поиска
 - 3. пчелиные алгоритмы
 - 4. поисковые алгоритмы на деревьях

Ответы: 1, 2,3.

Вопросы с коротким ответом 2-балла

1. Укажите какие значения примут L и R для следующего целевого утверждения на Прологе?

```
?append(L, [3|R], [1, 2, 3, 4, 5]).
```

Ответ: L=[1, 2], R=[4, 5]

2. Что реализует следующий фрагмент программы на Прологе?

DOMAINS

```
list = integer* /* или любой тип, какой хотите */
```

PREDICATES

```
length_of(list,integer)
```

CLAUSES

```
length_of([], 0).
length_of([_|T],L):-
length_of(T,TailLength),
L = TailLength + 1.
```

GOAL

```
length_of([1,2,3],L).
```

Ответ: подсчет элементов в списке

3. Есть фрагмент базы фактов на прологе. Составьте правило для вычисления дяди и племянников.

```
отец (коля, миша).
отец(коля, саша).
брат(миша, саша).
брат(вася, коля).
```

Ответ: дядя(A, B):- брат(A, C), отец(C, B).

4. Этот встроенный предикат всегда приводит к неудаче. Когда он является частью составного запроса, то заставляет интерпретатор вернуться назад и попробовать найти новые конкретизации для переменных. Этот процесс будет продолжаться до тех пор, пока не исчерпаются соответствующие факты программы, после чего весь составной запрос потерпит неудачу. Что это за предикат в Прологе?

Ответ: Fail

Вопросы с развернутым ответом 3-балла

- 1. Двумерные автоматы. Окрестности фон Неймана и Мура. Реализация клеточного автомата (алгоритм). Самовоспроизведение в клеточных автоматах.
- 2. Мультиагентные системы. Понятие агента, его свойства. Типы агентов в зависимости от архитектуры и уровня интеллекта. Взаимодействие агентов.
- 3. Методы роевой оптимизации. Бактериальный поиск. Пчелиный поиск. Приложение методов в разработке систем искусственного интеллекта.
- 4. Понятие природных (биоинспирированных) вычислений. Источники появления, классификация методов, приложения в моделировании и разработке систем искусственного интеллекта.

20.2 Промежуточная аттестация

Промежуточная аттестация может включать в себя проверку теоретических вопросов, а также, при необходимости (в случае не выполнения в течение семестра), проверку выполнения установленного перечня лабораторных заданий, позволяющих оценить уровень полученных знаний и/или практическое (ие) задание(я), позволяющее (ие) оценить степень сформированности умений и навыков.

Для оценки теоретических знаний используется перечень контрольно-измерительных материалов. Каждый контрольно-измерительный материал для проведения промежуточной аттестации включает два задания - вопросов для контроля знаний, умений и владений в рамках оценки уровня сформированности компетенции. При оценивании используется количественная шкала. Критерии оценивания представлены в приведенной ниже таблице

Для оценивания результатов обучения на зачете с оценкой используются следующие содержательные показатели (формулируется с учетом конкретных требований дисциплины):

1. знание теоретических основ учебного материала, основных определений, понятий и используемой терминологии;

- 2. умение проводить обоснование и представление основных теоретических и практических результатов (теорем, алгоритмов, методик) с использованием математических выкладок, блок-схем, структурных схем и стандартных описаний к ним;
- 3. умение связывать теорию с практикой, иллюстрировать ответ примерами, в том числе, собственными, умение выявлять и анализировать основные закономерности, полученные, в том числе, в ходе выполнения лабораторнопрактических заданий;
- 4. умение обосновывать свои суждения и профессиональную позицию по излагаемому вопросу;
- 5. владение навыками программирования и экспериментирования с компьютерными моделями алгоритмов обработки информации в среде Matlab в рамках выполняемых лабораторных заданий;
- 6. владение навыками проведения компьютерного эксперимента, тестирования компьютерных моделей алгоритмов обработки информации.

Различные комбинации перечисленных показателей определяют <u>критерии</u> оценивания результатов обучения (сформированности компетенций) на зачете с оценкой:

■ Высокий (углубленный) уровень сформированности компетенций; повышенный (продвинутый) уровень сформированности компетенций; пороговый (базовый) уровень сформированности компетенций.

Для оценивания результатов обучения на зачете с оценкой используется 4-балльная шкала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Для оценивания результатов обучения на зачете используется – зачтено, не зачтено по результатам тестирования.

Соотношение показателей, критериев и шкалы оценивания результатов обучения на государственном экзамене представлено в следующей таблице.

Критерии оценивания компетенций и шкала оценок на зачете с оценкой

Критерии оценивания компетенций	Уровень сформированности компетенций	Шкала оценок
Обучающийся демонстрирует полное соответствие знаний, умений, навыков по приведенным критериям свободно оперирует понятийным аппаратом и приобретенными знаниями, умениями, применяет их при решении практических задач. Успешно выполнены лабораторные работы в соответствии с установленным перечнем.	Повышенный уровень	Отлично
Ответ на контрольно-измерительный материал не полностью соответствует одному из перечисленных выше показателей, но обучающийся дает правильные ответы на дополнительные вопросы. При этом обучающийся демонстрирует соответствие знаний, умений, навыков приведенным в таблицах показателям, но допускает незначительные ошибки, неточности, испытывает затруднения при решении практических задач. Успешно выполнены лабораторные работы в соответствии с установленным перечнем.	Базовый уровень	Хорошо

Обучающийся демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателям, допускает значительные ошибки при решении практических задач. При этом ответ на контрольно-измерительный материал не соответствует любым двум из перечисленных показателей, обучающийся дает неполные ответы на дополнительные вопросы. Успешно выполнены лабораторные работы в соответствии с установленным перечнем.	Пороговый уровень	Удовлетворительно
Ответ на контрольно-измерительный материал не соответствует любым трем из перечисленных показателей. Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые ошибки. Не выполнены лабораторные работы в соответствии с установленным перечнем.	-	Неудовлетворительно

Пример контрольно- измерительного материала

Y I DE	РМДАЮ
Ваведующий кафедрой тех	нологий
обработки и защиты инфо	рмации_
A.A	. Сирота
	2024

VTDEDN/ II A I O

Направление подготовки / специальность <u>09.04.02 Информационные системы и технологии</u> Профиль подготовки/специализация: <u>Мобильные приложения и компьютерные игры, Системы прикладного искусственного интеллекта, Информационные технологии в менеджементе, АСИС Дисциплина <u>Б1.0.11 Искусственный интеллект</u></u>

Форма обучения Очное

Вид контроля Экзамен

Вид аттестации Промежуточная

Контрольно-измерительный материал № 1

- 1. Представление знаний на основе аппарата нечетких множеств. Основные принципы реализации нечеткого вывода в ЭС.
- 2. Основные типы агентных моделей и архитектур: делиберативные, реактивные, гибридные. Классификация мультиагентных систем (МАС).

Преподаватель	В.В.Г	аршина

Примерный перечень вопросов к экзамену

1. Понятие ИИ. Основные этапы становления ИИ как науки. Предметные области, связанные с задачами ИИ. Основные направления современных исследований в области ИИ.

Представление знаний

- 2. Продукционная модель (если-то). Формат правил. Классификация продукционных правил. Архитектура продукционной системы. Прямой и обратный вывод в продукционной модели. Конфликтные наборы правил. Алгоритмы разрешения конфликтов. Достоинства и недостатки модели.
- 3. Логическая модель представления знаний. Логика высказываний. Описание предметной области на основе логики предикатов первого порядка. Вывод на основе метода резолюций: прямой и обратный (примеры). Достоинства и недостатки модели.
- 4. Фреймовая модель представления знаний. Структура данных фрейм: слоты, присоединенные процедуры, демоны. Проблема множественного наследования во фреймах и конфликты. Значения по умолчанию. Описание иерархических структур фреймами. Вывод заключений по модели. Достоинства и недостатки модели.
- 5. Семантическая сеть. Структура семантической сети: концепты, атрибуты, отношения (типы). Структурирование знаний в семантических сетях. Реализация дедуктивного вывода на семантических сетях. Достоинства и недостатки модели.

Язык Пролог

- 6. Пролог, как система, реализующая логический вывод в исчислении предикатов первого порядка. Алгоритм работы машины логического вывода языка Пролог. Пролог-программа и ее выполнение.
- 7. Логическая программа. Факты, правила, запросы (цели), переменные их типы. Основные разделы пролог-программы. Предикаты в Прологе, объявление пользовательского предиката в программе. Арность предиката. Переменные, их типы, описание. Анонимные переменные.
- 8. Сопоставление, унификация, поиск с возвратом (backtraking). 4 правила организации поиска с возвратом, доказательство целевых утверждений при использовании механизма возврата. Управление поиском решений в Прологе: fail, отсечение (!), отрицание (not).
- 9. Представление и обработка списков в прологе. Форма записи, шаблоны, процедуры обработки списков. Какие задачи по обработке данных и знаний в прологе решаются через использование списков? Примеры.

Реализация вывода в интеллектуальных системах, основанных на нечетких знаниях

- 10. Виды нечеткости знаний и причины их появления. Выводы на ненадежных знаниях методом разбиения с использованием коэффициента степени надежности (СF-коэффициенты), коэффициенты уверенности, теория Дампстера-Шафера. Байесовский подход к описанию нечеткости.
- 11. Представление знаний на основе аппарата нечетких множеств (fuzzy logic). Понятие нечеткого множества, нечеткой переменной, допустимые операции. Способы построения функций принадлежности. Вывод на основе метода Мамдани. Основные принципы реализации нечеткого вывода в ЭС. Принципы нечеткого управления.
- 12. Байесовские сети доверия (БСД). Основные положения теории. Алгоритм расчета распространения вероятностей в БСД. Порядок разработки модели вывода на основе БСД. Основные инструменты разработки и средства вывода заключений в Hugin Expert.

Сети Петри

- 13. Основные понятия сетей Петри. Виды сетей Петри. Применение.
- 14. Способы задания сети Петри. Примеры.

- 15. Правила выполнения сетей Петри. Моделирование на сети Петри (пример).
- 16. Свойства сетей Петри. Задачи анализа сетей Петри.

Природные вычисления

- 17. Понятие природных (биоинспирированных) вычислений. Источники появления, классификация методов, приложения в моделировании и разработке систем искусственного интеллекта.
- 18. Клеточный автомат понятие, формальное определение, виды клеточных автоматов: одномерный и двумерный.
- 19. Задание одномерного (элементарного) клеточного автомата. Правила в табличной и графической форме.
- 20. Исследование клеточных автоматов. Коды Вольфрама.
- 21. Двумерные автоматы. Окрестности фон Неймана и Мура. Реализация клеточного автомата (алгоритм). Самовоспроизведение в клеточных автоматах. Игра Жизнь.
- 22. Вариации клеточных автоматов: ассинхронные, недетерминированные, блочные. Примеры моделирования на клеточных автоматах.
- 23. Принципы эволюционного моделирования, направления: эволюционные стратегии, эволюционное программирование, генетические алгоритмы и генетическое программирование. Прикладные задачи.
- 24. Генетические алгоритмы основные понятия, формальное представление алгоритма. Отбор, скрещивание, мутации.
- 25. Реализация операции скрещивания, типы кроссоверов (одноточечный, духточечный). Кроссовер на строках переменной длины. Шаблоны Холланда. Примеры.
- 26. Операция мутации. Виды мутаций. Критерии останова процесса отбора и эволюции. Основные задачи исследования поколений в процессе эволюции, решаемые на основе ГА. Применение ГА в искусственном интеллекте.
- 27. Понятие эмерджентного искусственного интеллекта. Роевой искусственный интеллект (swarm intelligence): особенности функционирования, системное формальное описание.
- 28. Роевые модели. Метод роя частиц. Модель поведения стаи птиц Рейнолдса.
- 29. Методы роевой оптимизации. Бактериальный поиск. Пчелиный поиск. Приложение методов в разработке систем искусственного интеллекта.

Мультиагентные системы

- 30. История развития агентно-ориентированных систем (AOC). Основные направления научного поиска в AOC. Основные понятия агентно-ориентированного подхода.
- 31. Стандартизация проектирования AOC: OMG MASIF, FIPA. Коммуникация агентов. Основные требования, предъявляемые к AOC. Стандартные свойства агентов.
- 32. Основные типы агентных моделей и архитектур. Виды интеллектуальных агентов: Делиберативные, реактивные, гибридные. Методы математического обеспечения для реализации агентов.
- 33. Сети потребностей и возможностей для построения самоорганизующихся систем, основанных на мультиагентном подходе к моделированию. Модели межагентного взаимодействия. Инструменты разработки МАС.
- 34. Применение мультиагентного подхода к задачам управления ресурсами предприятий. Примеры использования мультиагентного подхода к моделированию сложными информационными системами.

35. Онтологии

36. Понятие онтологии, элементы онтологии: экземпляры (примеры), понятия (концепты), атрибуты, отношения. Назначение онтологий. Задачи, решаемые с помощью онтологий.

- 37. Типы онтологий: верхнего уровня, предметных областей, прикладные онтологии. Примеры крупных онтологических проектов СҮС, SUMO, Sowa's ontology. Основные характеристики лексических онтологий.
- 38. Языки описания онтологий. Стандарты. Инструментальные средства проектирования онтологий.