МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кас	федрой ВМиПИТ
	Леденева Т. М.
	23 марта 2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

<u>Б1.В.ДВ.01.02 Компьютерная математика</u>

02.03.02 фундаментальная информатика и информационные технологи	1И.

1. Код и наименование направления подготовки/специальности:

2. Профиль подготовки/специализация:

Инженерия программного обеспечения.

3. Квалификация (степень) выпускника:

бакалавриат.

4. Форма обучения:

очная.

5. Кафедра, отвечающая за реализацию дисциплины:

кафедра вычислительной математики и прикладных информационных технологий.

6. Составители программы:

Корольков Олег Геннадьевич, кандидат физико-математических наук, доцент кафедры вычислительной математики и прикладных информационных технологий.

7. Рекомендована:

научно-методическим советом факультета ПММ 22 марта 2024 г., протокол №5.

8. Учебный год: Семестр:

2025/2026. 5.

9. Цели и задачи учебной дисциплины:

Цель изучения дисциплины «Компьютерная математика» — ознакомить студентов с основами решения математических задач на компьютере.

Задачей дисциплины является знакомство студентов с теоретическими, алгоритмическими, аппаратными и программными средствами решения математических задач на компьютерах; знакомство студентов с компьютерным представлением математических объектов и основными алгоритмами численных и символьных вычислений; получение студентами навыков реализации алгоритмов численных и символьных вычислений; получение студентами навыков решения практических задач средствами систем компьютерной математики.

10. Место учебной дисциплины в структуре ООП:

Дисциплина «Компьютерная математика» входит в часть программы бакалавриата, формируемую участниками образовательного процесса, и является дисциплиной по выбору в 5 семестре. Данный курс непосредственно связан с дисциплинами «Математический анализ», «Линейная алгебра», «Дискретная математика», «Информатика и программирование», «Архитектура вычислительных систем», «Вычислительные методы», изучаемыми в рамках программы подготовки бакалавра.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обу- чения
ПК-4	Способность к анализу тре- бований и разработке вариантов реализации информаци- онной систе- мы; способ- ность к оценке качества, на- дежности и эффективно- сти информа- ционной сис- темы в кон- кретной про- фессиональ- ной сфере		Разрабатывает и ис- следует алгоритмы, вычислительные мо- дели, проектирует ба- зы данных для реали- зации функций и сер- висов систем инфор- мационных техноло- гий	Знает основные программные, инструментальные и вычислительные средства решения математических задач. Умеет использовать программные, инструментальные и вычислительные средства для компьютерной реализации алгоритмов решения математических задач. Владеет навыками реализации решений математических задач с использованием современных программных, инструментальных и вычислительных средств

12. Объем дисциплины в зачетных единицах/час:

2/72.

Форма промежуточной аттестации:

зачёт с оценкой.

13. Виды учебной работы:

Вид учебной работы	Семестр 5	Всего
Аудиторные занятия	32	32
Лекционные занятия	16	16
Практические занятия	0	0
Лабораторные занятия	16	16
Самостоятельная работа	40	40
Курсовая работа	0	0
Промежуточная аттеста- ция	0	0
Часы на контроль	0	0
Всего	72	72

13.1. Содержание дисциплины:

№ п/п	Наименование разде- ла дисциплины	Содержание раздела дисциплины
1	Введение в компью- терную математику	Предмет компьютерной математики. Численные и аналитические вычисления с помощью компьютера и их соотношение. Обзор основных систем компьютерной математики
2	Машинная арифмети- ка с вещественными числами	Системы счисления с плавающей точкой. Нормализованные и денормазизованные числа. Характеристики систем счисления с плавающей точкой. Машинная точность и ошибки округления. Машинные системы счисления. Стандартные форматы представления чисел в компьютере. Выполнение арифметических операций в компьютере
3	Элементы теории по- грешностей	Понятие абсолютной и относительной погрешности. Оценка погрешности основных арифметических опера- ций. Источники и классификация погрешностей резуль- тата вычислений. Погрешность метода и погрешность вычислений. Влияние обусловленности задачи и выбора алгоритма на погрешность результата
4	Элементы теории сложности алгоритмов	Понятие сложности алгоритма. Классы трудоёмкости алгоритмов. Варианты оценки сложности алгоритма. Функция времени вычислений. Асимптотическое поведение функций. Классы сложности алгоритмов. Оценка сложности алгоритмов некоторых численных методов
5	Длинная арифметика	Представление больших чисел. Алгоритмы умножения. Алгоритмы извлечения корня. Алгоритмы преобразования системы счисления. Алгоритмы деления

6	Синтаксический ана- лиз математических выражений	Синтаксис математических выражений. Типы лексем. Обратная польская нотация. Анализ корректности записи математического выражения. Алгоритм преобразования выражения в обратную польскую форму. Алгоритм вычисления выражения, записанного в обратной польской нотации. Алгоритмы преобразования выражений, записанных в обратной польской нотации
7	Системы компьютер- ной математики	Обзор наиболее распространённых пакетов компьютерной математики. Общее знакомство с интерфейсом пакета Maple, общие правила работы. Типы данных, основы работы с выражениями. Задачи линейной алгебры. Решение уравнений и неравенств. Дифференцирование, интегрирование. Дифференциальные уравнения. Последовательности и ряды. Графика

13.2. Темы (разделы) дисциплины и виды занятий:

No	Наименование темы (раздела)	Лекцион-	Практи-	Лабора-	Самостоя-	
П/П	дисциплины	ные	ческие	торные	тельная	Всего
11//11	дисциплины	занятия	занятия	занятия	работа	
1	Введение в компьютерную математику	1	0	0	0	1
2	Машинная арифметика с ве- щественными числами	3	0	4	8	15
3	Элементы теории погрешно- стей	4	0	4	8	16
4	Элементы теории сложности алгоритмов	2	0	0	2	4
5	Длинная арифметика	2	0	0	2	4
6	Синтаксический анализ мате- матических выражений	2	0	0	2	4
7	Системы компьютерной ма- тематики	2	0	8	18	28
	Всего	16	0	16	40	72

14. Методические указания для обучающихся по освоению дисциплины:

Освоение дисциплины включает контактную и самостоятельную работу обучающихся, осуществляемую в соответствии с учебным планом, календарным учебным графиком и настоящей рабочей программой.

Контактная работа предусматривает взаимодействие обучающегося с преподавателем как во время очных занятий, так и в электронной информационнообразовательной среде Воронежского государственного университета. Контактная работа включает в себя лекционные и лабораторные занятия, индивидуальные консультации преподавателя по возникающим у обучающегося в процессе освоения учебного материала дисциплины вопросам, а также групповую консультацию перед экзаменом. Для успешного усвоения материала обучающий посещает занятия и консультации, проводимые как в очном, так и в дистанционном формате, выполняет рекомендации преподавателя по организации контактной работы.

В процессе самостоятельной работы обучающийся осваивает содержание дисциплины, используя конспекты лекций, а также учебно-методическую литературу и иные источники, выполняет практические задания и лабораторные работы, готовится к контрольным работам, выполняет рекомендации преподавателя по организации самостоятельной работы.

Процесс освоения учебной дисциплины в течение закреплённого учебным планом периода подвергается текущему контролю, который осуществляется в следующих формах: фиксация посещения занятий, проводимых как в очном, так и дистанционном формате; проверка выполнения практических заданий и лабораторных работ; выполнение и проверка контрольных работ.

Промежуточная аттестация проводится в очном или дистанционном формате в форме зачёта с оценкой. Итоговая оценка по дисциплине определяется на основе оценок, полученных в ходе текущего контроля.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины:

а) основная литература:

Nº ⊓/⊓	ΙΛΟΤΟΠΡΙΝΛ
1	Амосов А. А. Вычислительные методы / А. А. Амосов, Ю. А. Дубинский, Н. В. Копченова. — Москва : Лань, 2014. — 672 с. Режим доступа: https://lanbook.lib.vsu.ru/books/element.php?pl1_cid=25&pl1_id=42190
	Марlе в примерах и задачах : учеб. пособие для вузов / О. Г. Корольков, А. С. Чеботарев, Ю. Д. Щеглова. — Воронеж : ИПЦ ВГУ, 2011. — 131 с. Режим доступа: http://www.lib.vsu.ru/elib/texts/method/vsu/m11-92.pdf

б) дополнительная литература:

№ п/п	Источник
	Деммель Дж. Вычислительная линейная алгебра. Теория и приложения / Дж. Деммель. — М. : Мир, 2001. — 429 с.
	Панкратьев Е. В. Элементы компьютерной алгебры / Е. В. Панкратьев. — М. : БИНОМ, 2007. — 248 с.
3	Матрос Д. Ш. Элементы абстрактной и компьютерной алгебры : учеб. пособие для студ. вузов / Д. Ш. Матрос, Г. Б. Поднебесова. — М. : Academia, 2004. — 237 с.
4	Дэвенпорт Д. Компьютерная алгебра : системы и алгоритмы алгебраических вычислений / Дж. Дэвенпорт, И. Сирэ, Э. Турнье. — М. : Мир, 1991. — 350 с.
	Компьютерная алгебра. Символьные и алгебраические вычисления / Б. Бухбергер, Дж. Коллинз, Р. Лоос. — М. : Мир, 1986. — 391 с.
6	Самсонов Б. Б. Компьютерная математика : основание информатики / Б. Б. Самсонов, Е. М. Плохов, А. И. Филоненков. — Ростов-на-Дону : Феникс, 2002. — 510 с.

Тан К. Ш. Символьный С++ : Введение в компьютерную алгебру с использовани-7 ем объектно-ориентированного программирования / К. Ш. Тан, В.-Х. Стиб, Й. Харди. — М. : Мир, 2001. — 622 с.

в) информационные электронно-образовательные ресурсы:

Nº	Pecypc
п/п	1 сеурс
1	www.lib.vsu.ru — Зональная научная библиотека ВГУ
2	https://edu.vsu.ru/course/view.php?id=2013 — Электронный курс «Компьютерная
	математика»

16. Перечень учебно-методического обеспечения для самостоятельной работы:

№ п/п	Источник
	https://edu.vsu.ru/course/view.php?id=2013 — Электронный курс «Компьютерная математика»
2	Системы компьютерной математики. Лабораторный практикум: учебно- методическое пособие для вузов / О.Г.Корольков, С.Н.Медведев, О.А.Медведева.— Воронеж: ИПЦ ВГУ, 2016.— 49 с. Режим доступа: http://www.lib.vsu.ru/elib/texts/method/vsu/m16-178.pdf

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

При реализации дисциплины используется прикладное программное обеспечение — система компьютерной математики, например: Maple, Maxima, MatLab и другие системы компьютерной математики и моделирования.

При реализации дисциплины используется электронное обучение и дистанционные образовательные технологии. Для организации контактной и самостоятельной работы обучающихся в дистанционном формате рекомендован электронный курс «Компьютерная математика», размещённый на платформе «Электронный университет ВГУ», а также Интернет-ресурсы, приведённые в п.15в настоящей рабочей программы.

18. Материально-техническое обеспечение дисциплины:

Мебель и оборудование для лекционных занятий, проводимых в очном формате: специализированная мебель, компьютер (ноутбук), мультимедийное оборудование (проектор, экран, средства звуковоспроизведения). Программное обеспечение для лекционных занятий: ОС Windows 8 (10), интернет-браузер (Chrome, Яндекс.Браузер, Mozilla Firefox), ПО Adobe Reader, пакет стандартных офисных приложений для работы с документами (MS Office, МойОфис, LibreOffice).

Мебель и оборудование для лабораторных занятий, проводимых в очном формате: специализированная мебель, компьютер (ноутбук), мультимедийное оборудование (проектор, экран, средства звуковоспроизведения), персональные компьютеры для индивидуальной работы. Программное обеспечение для лабораторных занятий: ОС

Windows 8 (10), интернет-браузер (Chrome, Яндекс.Браузер, Mozilla Firefox), ПО Adobe Reader, пакет стандартных офисных приложений для работы с документами (MS Office, МойОфис, LibreOffice), Microsoft Visual Studio Community Edition (свободное и/или бесплатное ПО).

19. Оценочные средства для проведения текущей и промежуточной аттестаций:

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº	Наименование раздела	Компетен-	Индикатор(ы) дости-	Оценочные средст-
п/п	дисциплины	ция(и)	жения компетенции	ва
1	Машинная арифметика с вещественными числами	ПК-4	ПК-4.1	контрольная рабо- та
2	Элементы теории по-грешностей	ПК-4	ПК-4.1	контрольная рабо- та
3	Элементы теории сложности алгоритмов	ПК-4	ПК-4.1	контрольная рабо- та
4	Длинная арифметика	ПК-4	ПК-4.1	контрольная рабо- та
5	Синтаксический анализ математических выражений	ПК-4	ПК-4.1	контрольная рабо- та
6	Системы компьютерной математики	ПК-4	ПК-4.1	лабораторные ра- боты

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания:

20.1 Текущий контроль успеваемости:

Текущий контроль успеваемости по дисциплине осуществляется с помощью лабораторных работ и контрольных работ.

Примеры практических заданий:

- 1. Укажите количество положительных нормализованных чисел в системе счисления с плавающей точкой F(β, t, L, U), заданной следующими параметрами:
- основание системы счисления $\beta = 2$:
- количество разрядов, отведенных под представление мантиссы t = 5;
- нижняя граница диапазона значений показателя степени L=-2;
- верхняя граница диапазона значений показателя степени U=2.
- 2. Укажите показатель степени положительного нормализованного числа, начиная с которого в системе счисления с плавающей точкой $F(\beta,t,L,U)$ числа идут с шагом, равным единице, если
- основание системы счисления $\beta = 2$;
- количество разрядов, отведенных под представление мантиссы t = 5;
- нижняя граница диапазона значений показателя степени L = -10;

- верхняя граница диапазона значений показателя степени U=10.
- 3. Укажите максимальное расстояние между соседними положительными числами в системе счисления с плавающей точкой $F(\beta,t,L,U)$, заданной следующими параметрами:
- основание системы счисления $\beta = 2$;
- количество разрядов, отведенных под представление мантиссы t = 5;
- нижняя граница диапазона значений показателя степени L = -10;
- верхняя граница диапазона значений показателя степени U=10.
- 4. На хранение числа в некоторой машинной системе счисления отводится 2 байта: 1 бит на знак, 7 битов на показатель и 8 битов на мантиссу. Для числа выписать побитовое представление в памяти.

Лабораторные работы:

Образцы заданий для лабораторных работ можно найти в учебно-методическом пособии «Системы компьютерной математики. Лабораторный практикум» (см. п. 16 настоящей рабочей программы).

20.2 Промежуточная аттестация:

Промежуточная аттестация по дисциплине осуществляется в форме зачёта с оценкой. Итоговая оценка по дисциплине определяется на основе оценок, полученных в ходе текущего контроля.

Критерии оценивания результатов обучения при промежуточной аттестации:

Отлично: выполнение лабораторных работ (A), (B), (C); и выполнение контрольной работы на оценку «отлично».

Хорошо: выполнение лабораторных работ (A), (B); и выполнение контрольной работы на оценку не ниже «хорошо».

Удовлетворительно: выполнение лабораторных работ (A); и выполнение контрольной работы на оценку не ниже «удовлетворительно».

Неудовлетворительно: выполнение не всех лабораторных работ (А); или невыполнение или неудовлетворительное выполнение контрольной работы.