МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ Заведующий кафедрой геоэкологии и мониторинга окружающей среды

Muy

C.A. Куролап 30.05.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.ДВ.06.01 Цифровые модели геополей

Код и наименование дисциплины в соответствии с Учебным планом

1. Код и наименование направления подготовки:

05.03.06 - Экология и природопользование

2. Профиль подготовки: Геоэкология

3. Квалификация выпускника: бакалавр

4. Форма обучения: заочная

- 5. Кафедра, отвечающая за реализацию дисциплины: кафедра геоэкологии и мониторинга окружающей среды
- **6. Составитель программы:** Нестеров Юрий Анатольевич, кандидат географических наук, доцент
- 7. **Рекомендована:** Протокол о рекомендации: НМС ф-та географии, геоэкологии и туризма №6 от 03.05.2024 г.

9. Цели и задачи учебной дисциплины:

Целью учебной дисциплины ставится:

- формирование у студентов представления о непрерывности большинства географических и экологических процессов и явлений;
- представление о возможности изучения при помощи цифровых моделей как реальных, так и абстрактных географических полей.

Задачи дисциплины состоят в том, что:

- студенты должны изучить процесс создания ЦМГ от оцифровки сканированных или иных растровых изображений до трехмерных моделей;
 - познакомиться с историей создания ЦМГ;
- методами расчета, построением карт важнейших морфометрических показателей рельефа, направления потоков геохимической миграции элементов, зон затопления, полей загрязнения атмосферного воздуха, полей загрязнения почвенного покрова основными загрязнителями, вычисления границ геоморфологических образований.
- **10. Место учебной дисциплины в структуре ООП:** дисциплина относится к вариативной части учебного рабочего плана по направлению бакалавриата 05.03.06 Экология и природопользование.

Входными знаниями являются знания основ топографии, картографии, географии, геохимии окружающей среды, математической статистики.

11. Планируемые результаты обучения по дисциплине (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

			1	1 =
Код	Название компетенции	Код	Индикатор	Планируемые результаты обучения
ПК-3	Способен проводить оценку воздействия на окружающую среду и экологическую экспертизу на основе использования современных экологогеохимических, картографогеодезических и дистанционных методов контроля	ПК-3.5	Проводит комплекс работ по топографогеодезическому и картографическому обеспечению инженерно-экологических изысканий и экологической экспертизы	Знать: теоретические основы создания и использования геополей; возможности представления в виде непрерывного картографического изображения результатов оценки воздействия хозяйственной деятельности человека на компоненты природы и природные комплексы в целом; основы создания гридов с использованием различных методов интерполяции исходных данных и оценки их качества; теоретические основы пространственного анализа данных, отраженных в картографических произведениях в свете теоретических научных концепций современной картографической науки; возможности использования этих данных для выявления пространственных особенностей и географических закономерностей картографируемых явлений и объектов; Уметь: применять на практике концептуальные положения современной теории геополей, положенные в основу разработки геоэкологических карт;

	подбирать комплекс способов анализа полученных данных для их картографического отображения при создании макета тематических карт; отбирать минимально достаточные типичные данные для построения картографического произведения адекватно и достоверно передающие свойства и особенности картографируемых явлений и объектов; применять на практике методы пространственного анализа для выявления географических особенностей картографируемых явлений, картографической оценки экологического состояния изучаемых объектов и применять их в практиком аспекте при разработке системы природоохранных мероприятий на глобальном и региональном уровнях; Владеть: программными средствами, которые применяются для построения геополей и их анализа; основами моделирования возможных явлений для решения конкретных научных и прикладных задач географического и геоэкологического характера; принципами составления макетов тема-
	· ·
	практиком аспекте при разработке си-
	•
	которые применяются для построения геополей и их анализа; основами моделирования возможных явлений для решения конкретных научных и прикладных задач географического и геоэкологического характера;
	ведениях общегеографического и тема- тического характера

12. Объем дисциплины в зачетных единицах/час. — 3 / 108.

Форма промежуточной аттестации – зачет с оценкой.

13. Виды учебной работы

	Трудоемкость (часы)		
Вид учебной работы	D	По семестрам	
,	Всего	9 семестр	
Аудиторные занятия, в том числе:	16	16	
лекции	4	4	
лабораторные	12	12	
самостоятельная работа	88	88	
контроль	4	4	
Форма промежуточной аттестации	зачет с оценкой	зачет с оценкой	
Итого:	108	108	

13.1 Содержание дисциплины

Nº п/п			Реализация раздела дис-
	Наименование разде-	Содержание раздела дисциплины	циплины с
	ла дисциплины	оодоржанно раздела длецииния	помощью он-
			лайн-курса, ЭУМК*
		1. Лекции	
1.1	Введение в теорию	Понятие о цифровых моделях геополей. Цифровые	https://edu.vsu
	географического поля	модели рельефа. Исторический опыт создания циф-	.ru/course/vie
		ровых моделей геополей.	w.php?id=107
1.2	Методы расчета ЦМГ	Интерполяция, экстраполяция и аппроксимация дан-	94
		ных. Локализация модели. Качество данных. Триангу-	
		ляция, средневзвешенная интерполяция, кригинг, ку-	
4.0		сочно-полиномиальное сглаживание.	
1.3	Прикладное использо-	Построение ЦМГ и основных морфометрических пока-	
	вание ЦМГ	зателей геополей. Карты уклонов и экспозиций; карты	
		вершинных, базисных и остаточных поверхностей;	
		карты градиентов морфометрических характеристик.	
		Построение профилей поперечного сечения геополей.	
0.4		. Лабораторные работы	
2.1	Методы расчета ЦМГ	Освоение принципов выбора способов интерполяции	
		при различном пространственном характере разме-	
		щения данных. Равномерное, линейное, кластеризо-	
0.0		ванное распределение.	
2.2	Модели представле-	Освоение способов построение цифровой модели ре-	
	ния данных в ЦМГ	льефа. Визуализация модели и методы анализа. Вы-	
2.2	They were the transfer of	бор данных с помощью простейших запросов SQL.	
2.3	Трехмерные модели и	Освоение способов построения полей уклонов, экспо-	
	виртуальные геоизоб-	зиционных параметров, плановой и вертикальной кри-	
	ражения	визны. Географическая и геоэкологическая интерпретация полученных данных.	
2.4	Прикладное использо-	Арифметические операции с географическими поля-	
2.4	вание ЦМГ	ми. Освоение способов построения геополей остаточ-	
	вание цічн	ного рельефа и их географическая и геоэкологическая	
		интерпретация.	
2.5	Прикладное использо-	Освоение способов корреляционного и регрессионно-	
	вание ЦМГ	го анализа геополей, построение карт изаномал. Гео-	
		графическая и геоэкологическая интерпретация.	
2.6	Прикладное использо-	Освоение способов анализа равномерности простран-	
	вание ЦМГ	ственного размещения объектов и явлений при помо-	
	,	щи геополей.	
	<u> </u>	1	

13.2 Темы (разделы) дисциплины и виды занятий

	13.2 темы (разделы) дисциплины и виды занятии						
Nº		Виды занятий (часов)					
п/ п	Наименование темы (раз- дела) дисциплины	Лекции	Лабора- торные	Самостоя- гельная работа	Контроль	Всего	
1	Введение в теорию географического поля	1	-	10	-	11	
2	Методы расчета ЦМГ	2	2	10	-	14	
3	Модели представления данных в ЦМГ	-	2	10	-	12	
4	Информационное обеспе-	-	-	20	-	20	

	чение для создания ЦМГ					
	Программное и аппарат-					
5	ное обеспечение для со-	-	-	20	-	20
	здания ЦМГ					
7	Прикладное использова-	1	8	18	_	27
′	ние ЦМГ	l	0	10	-	21
	Контроль		_	_	4	4
					•	•
	Итого:	4	12	88	4	108

14. Методические указания для обучающихся по освоению дисциплины

Необходима регулярная работа с текстом конспектов лекций для понимания и освоения материала предшествующей и последующей лекций. По указанию преподавателя необходимо регулярно выполнять домашние задачи, выполнять контрольные тесты в ходе текущей аттестации (по каждой пройденной теме), подготовить презентацию по рекомендованной теме к итоговой зачетной аттестации.

При подготовке к промежуточной аттестации студенты изучают и конспектируют рекомендуемую преподавателем учебную литературу по темам лекционных и лабораторных занятий, самостоятельно осваивают понятийный аппарат.

Методические рекомендации по организации самостоятельной работы студентов включают:

- использование электронных учебников и ресурсов интернет;
- методические разработки с примерами решения типовых задач в сфере построения, использования географических полей;
- использование лицензионного программного обеспечения для пространственного анализа цифровых моделей географических полей.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

Nº ⊓/⊓	Источник				
1	Ласточкин, А.Н. Основы общей теории геосистем: [16+] / А.Н. Ласточкин; Санкт-Петербургский государственный университет. — Санкт-Петербург: Издательство Санкт-Петербургского Государственного Университета, 2016. — Ч. 1. — 132 с.: схем., табл., ил. — Режим доступа: по подписке. — URL: http://biblioclub.ru/index.php?page=book&id=458067				
2	Ласточкин, А.Н. Основы общей теории геосистем: [16+] / А.Н. Ласточкин; Санкт-Петербургский государственный университет. — Санкт-Петербург: Издательство Санкт-Петербургского Государственного Университета, 2016. — Ч. 2. — 170 с.: схем., табл., ил. — Режим доступа: по подписке. — URL: http://biblioclub.ru/index.php?page=book&id=458068				
3	Нестеров Ю.А. Цифровые модели геополей: программное обеспечение Vertical Mapper / Ю.А. Нестеров; Воронежский государственный университет. – Воронеж: Издательский дом ВГУ, 2020. – 112 с.				
4	Нестеров Ю.А. Цифровые модели геополей: пространствиный анализ и моделирование в Vertical Mapper / Ю.А. Нестеров; Воронежский государственный университет. – Воронеж: Издательский дом ВГУ, 2021. – 93 с.				

б) дополнительная литература:

№ Источник	
------------	--

п/п	
5	Куролап С.А. Практикум по инженерно-экологическому проектированию и оценке риска здоровью: учеб. пособие / С.А. Куролап, О.В. Клепиков, Е.Л. Акимов. – Воронеж: Изд-во «Научная книга», 2016. – 214 с.
6	Толстобров, А. П. Управление данными : учебное пособие для вузов / А. П. Толстобров. — 3-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2022. — 272 с. — (Высшее образование). — ISBN 978-5-534-14162-7. — URL : https://urait.ru/bcode/496748
7	Стружкин, Н. П. Базы данных: проектирование: учебник для вузов / Н. П. Стружкин, В. В. Годин. — Москва: Издательство Юрайт, 2022. — 477 с. — (Высшее образование). — ISBN 978-5-534-00229-4. — URL: https://urait.ru/bcode/489099
8	Моделирование систем и процессов. Практикум : учебное пособие для вузов / В. Н. Волкова [и др.] ; под редакцией В. Н. Волковой. — Москва : Издательство Юрайт, 2022. — 295 с. — (Высшее образование). — ISBN 978-5-534-01442-6. — URL : https://urait.ru/bcode/490226
9	Мананков, А. В. Геоэкология. Методы оценки загрязнения окружающей среды : учебник и практикум для вузов / А. В. Мананков. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2022. — 186 с. — (Высшее образование). — ISBN 978-5-534-07885-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/490884

в) ресурсы интернет:

	/1 1				
№ п/п	Источник				
6	Электронный курс по дисциплине на портале «Электронный университет ВГУ»				
	Режим доступа: по подписке. – https://edu.vsu.ru/course/view.php?id=10794				
7	http://biblioclub.ru				
8	https://urait.ru				

16. Перечень учебно-методического обеспечения для самостоятельной работы

Nº ⊓/⊓	Источник
1	Геоинформационное картографирование в регионах России [Текст]: материалы VIII всероссийской научно-практической конференции, [г. Воронеж], 20 декабря 2016 г Воронеж: Изд-во «Научная книга», 2016. – 139 с. https://elibrary.ru/item.asp?id=28985605.pdf
2	Геоинформационное картографирование в регионах России [Текст]: материалы VII всероссийской научно-практической конференции, [г. Воронеж], 10-12 декабря 2015 г Воронеж: Изд-во «Научная книга», 2015. – 166 с. https://elibrary.ru/item.asp?id=25574449.pdf
3	Геоинформационное картографирование в регионах России [Текст]: материалы VI всероссийской научно-практической конференции, [г. Воронеж], 25 ноября 2014 г Воронеж: Изд-во «Научная книга», 2014. – 120 с. https://elibrary.ru/item.asp?id=25542802.pdf
4	Геоинформационное картографирование в регионах России [Текст]: материалы V всероссийской научно-практической конференции, [г. Воронеж], 19-22 сентября 2013 г. – Воронеж: Изд-во «Научная книга», 2013. – 184 с. https://elibrary.ru/item.asp?id=25800573.pdf
5	Геоинформационное картографирование в регионах России [Текст]: материалы IV всероссийской научно-практической конференции, [г. Воронеж], 15 ноября 2012 г. – Воронеж: изд-во «Научная книга», 2012. – 153 с https://elibrary.ru/item.asp?id=25769954.pdf

17. Образовательные технологии, используемые для реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

Программа курса может быть реализована с применением дистанционных технологий на платформе «Образовательный портал «Электронный университет ВГУ». Элек-

тронный курс по дисциплине на портале «Электронный университет ВГУ» – Режим доступа: по подписке. – https://edu.vsu.ru/course/view.php?id=10794

18. Материально-техническое обеспечение дисциплины:

Для лекционных занятий — учебная аудитория, оснащенная специализированной мебелью, комплектом персональных компьютеров с мониторами, ПО- OfficeSTD 2013/ на базе "Intel Pentium", принтер лазерный НР, сканер планшетный Epson, учебный комплект TOPOCAD, ArcGIS, MS Office 2013, CorelDraw, CorelDraw Graphics, Adobe PageMaker, Adobe Photoshop, Adobe Creative, Dr.Web, OfficeSTD 2013

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины	Компетенция	Индикатор достижения компетенции	Оценочные средства		
1	Методы расчета ЦМГ	ПК-3	ПК-3.5	Лабораторные работа, Устный опрос		
2	Модели представления данных в ЦМГ	ПК-3	ПК-3.5	Лабораторные работа, Устный опрос		
3	Информационное обеспечение для создания ЦМГ	ПК-3	ПК-3.5	Устный опрос, тести- рование		
4	Программное и аппаратное обеспечение для создания ЦМГ	ПК-3	ПК-3.5	Устный опрос, тести- рование		
5	Прикладное использо- вание ЦМГ	ПК-3	ПК-3.5	Лабораторные работа, Устный опрос		
	Промежуточная аттестация форма контроля – зачет с оценкой					

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

- лабораторных работ, выполняемых по тематике:

Методы расчета ЦМГ. Освоение способов построение цифровой модели рельефа. Визуализация модели и методы анализа.

Трехмерные модели и виртуальные геоизображения

Прикладное использование ЦМГ. Освоение способов построения полей уклонов, экспозиционных параметров, плановой и вертикальной кривизны

Прикладное использование ЦМГ. Арифметические операции с географическими полями.

Прикладное использование ЦМГ. Освоение способов корреляционного и регрессионного анализа геополей, построение карт изаномал.

Прикладное использование ЦМГ. Освоение способов анализа равномерности пространственного размещения объектов

Критерии оценивания

Зачтено - обучающийся в полной мере владеет функциональными возможностями программного обеспечения, выполнение отдельных пунктов контрольной работы не вызывает затруднений, в ответе может допускать незначительные ошибки в применении отдельных операторов Vertical Mapper. Контрольная работа выполнена в отведенное время. Показанные знания имеют системный характер, логичны и полны.

Не зачтено - Обучающийся частично владеет функциональными возможностями программного обеспечения, объяснение и выполнение отдельных пунктов контрольной работы вызывает существенные затруднения, в ответе допускаются значительные ошибки в применении отдельных операторов Vertical Mapper. Ответ на контрольно-измерительный материал содержит существенные ошибки. Обучающийся демонстрирует отрывочные, фрагментарные знания

20.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

- контрольно-измерительных материалов, включающих 2 теоретических вопроса и расчетную аналитическую задачу, в которой использованы элементы заданий лабораторного практикума.

Теоретические вопросы:

- 1. Понятие географического поля: история формирования концепции и современное состояние.
- 2. Свойства географических полей и области их возможного применения в географии и геоэкологии.
- 3. Типы и географических полей.
- 4. Цифровые модели рельефа как пример географического поля: история создания и современные тенденции развития.
- 5. Карты барической топографии как пример географического поля. Возможности их использования в оценке загрязнения атмосферы.
- 6. Реальные и абстрактные географические поля.
- 7. Программное обеспечение для построения и анализа географических полей (MI Vertical Mapper, MI Discover).
- 8. Требования к аппаратному обеспечению.
- 9. Особенности и функциональные возможности MI Vertical Mapper.
- 10. Виды интерполяции при построении географических полей.
- 11. Моделирование географических полей.
- 12. Производные географические поля (поля уклонов, экспозиций, вертикальной и горизонтальной кривизны и т.д.).
- 13. Особенности интерполяции TIN и ее реализация в MI Vertical Mapper.
- 14. Особенности интерполяции IDW и ее реализация в MI Vertical Mapper.
- 15. Особенности интерполяции NN и ее реализация в MI Vertical Mapper.
- 16. Особенности интерполяции Rec и ее реализация в MI Vertical Mapper.
- 17. Особенности интерполяции Kriging и ее реализация в MI Vertical Mapper.
- 18. Представление о гриде как одном из способов представления географического поля.
- 19. Калькулятор гридов и его использование для геоэкологичесикого анализа.
- 20. Корреляционные матрицы в MI Vertical Mapper.

Критерии оценивания ответа:

Отлично - глубокое знание и понимание предмета, в том числе терминологии и основных понятий; теоретических закономерностей; фактических данных; удельный вес ошибок при контрольном опросе – не более 10%.

Хорошо - хорошее знание и понимание предмета, в том числе терминологии и теоретических понятий; грамотный ответ на экзамене без принципиальных ошибок; удельный вес ошибок при контрольном опросе от 11 до 35%.

Удовлетворительно - понимание в целом терминологии и теоретических закономерностей; существенные ошибки при изложении фактического материала; недостаточно логичный и аргументированный ответ на экзамене; удельный вес ошибок при контрольном опросе от 36 до 60%.

Неудовлетворительно - слабое и недостаточное знание терминологии и фактических данных, принципиальные ошибки при ответе; удельный вес ошибок при контрольном опросе более 60 %.

Типовое расчетное задание

Типовые лабораторные задания по курсу "Цифровые модели геополей" выполняются по индивидуальным наборам данных для каждого студента, которые включают задания из различных разделов лабораторных работ и сопровождаются краткими методическими указаниями. Результат оформляется в виде отчетного текстового файла MS Word с иллюстрацией итога (картографическое изображение, с легендой). Один из примеров заданий приводится ниже.

Регрессионный анализ связей между природными явлениями

Для выявления статистических связей между параметрами описываемых явлений, проявляющихся на одной и той же территории применяют корреляционный и регрессионный анализы. Они являются мощным инструментом в современных геоэкологических исследованиях. Основанный на грид-моделях регрессионный анализ позволяет более глубоко познать качественные и количественные стороны природных явлений и определить их пространственные особенности.

Задание:

- 1. Подготовить материалы для статистического анализа путем интерполяции исходных данных наблюдения за стоком и осадками за период 1928-2008 на территории Воронежской области.
- 2. Провести регрессионный анализ, определить зависимость величины стока от осадков. Создать карту изаномал стока. Дать географическую интерпретацию полученного пространственного размещения.

Результат:

- Сохранить график зависимости стока от количеств осадков за период 1928-2008 в MS Word.
- Создать карту (грид) изаномал стока за данный период.

Исходные материалы:

- Данные наблюдения величин стока и осадков за одинаковый период времени;
- Файл, содержащий векторную границу исследуемой территории (граница Воронежской области).
- Файлы, содержащие векторные изображения расположения точек наблюдения за осадками и стоковыми характеристиками.

Ход работы:

I - Обработка данных наблюдения

Для подготовки к анализу данных наблюдений за осадками (Осадки.tab) выполнить следующие шаги. Затем повторить аналогичные операции с данными наблюдения стока (Сток.tab):

1. Открыть слой данных (Осадки.tab в папке «Исходные материалы») и границу Воронежской области. Провести интерполяцию исходных данных с помощью приложений

Vertical Mapper: Create Grid/Interpolation. В появившемся окне выбрать метод интерполяции Natural Neighbour Simple. В окне Select Table and Column указать единицу измерения (Unit type) – Milimeters.

В следующем окне установить размер ячеек грида (Cell size) и поставить флажок в окне «Pick boundary region from map window» для отсечения созданного грида по заданной границе (граница Воронежской области). Для отсечения созданного грида с помощью Pick tool необходимо нажать левой кнопки мыши внутри заданной нами области.

2. Трансформировать гриды в точки (центроидов ячеек грида).

В окне Grid Manager выполнить команду Tools/Export, выбрать « MapInfo point table (.tab)» и сохранить в рабочую папку.

- 3. Записать координаты точек. В MapInfo выполнить следующую команду Tools/Tool Manager, загрузить приложение Coordinate Extractor. В окне Coordinate Extractor выбрать слой трансформируемого грида. Отметить окно «Create new columns to hold coordinates» для автоматического создания новых колонок, куда сохраняются координаты точек.
- 4. В целях упорядочения данных перед анализом (часто требуется при анализе больших объемом данных) можно использовать меню Table/Maintenance/Table Structure... В окне Modify Table Structure можно изменить порядок, название, тип данных в колонках таблицы атрибутов и провести другие необходимые преобразования. В данном случае необходимо «поднять» колонки Longtitude и Latitude, изменить наименование колонки Node Value на «Osadki»:

II - Проверка пространственной однородности получаемых точек

По результатам выполненных действий созданы 2 слоя точек из соответствующих гридов, в которых сохранены данные о величинах стока и осадков за период 1928-2008. Поскольку был задан одинаковый размер ячеек в обоих гридах, их центроиды совпадают (имеют одинаковые координаты Longitude и Latitude). Однако на краях гридов – по границе отсечения – могут, возникнуть точки, которые есть только в одном слое.

Необходимо устранить эти точки для корректного анализа. Для этого используется SQL-запросы: из окна команды Query/SQL Select.

После выборки будет открыта таблица Selection, в которой сохранятся только подходящие для нашего дальнейшего анализа точки. В данной таблице также содержатся величины стока и осадков во всех точках. Сохранить эту таблицу в рабочую папку под названием «Исходные данные для анализа»:

III - Построение модели зависимости стока от количества осадков

- 1. Экспортировать таблицу исходных точек из MapInfo в csv файл для дальнейшей обработки данных в MS Excel.
- 2. Открыть экспортированный файл MS Excel. Построить график с абсциссой Ocadki, а ордината Stok. На этом графике построить линейную модель и получить формулу зависимости величины стока от осадков. Сохранить график в файле MS Word для отчета.
- 3. Ввести в новой колонке полученную формулу зависимости, где x Ocadki, y Stok и рассчитать отклонение вычисленного значения стока от наблюденного.
- 4. Импортировать результат регрессионного анализа в MapInfo для построения итоговой карты (тип файла *.csv). По данным колонок импортированной таблицы, содержащей координаты точек, построить точечные объекты с данными отклонения расчетных стоковых характеристик от наблюденных (необходимо соблюсти сохранение проекции, такой же, как в исходных векторных файлах).
- 5. С помощью Vertical Mapper построить грид аномалий стоковых характеристик. Использовать интерполяцию NN Simple.
- 6. В отчетном текстовом файле объяснить наличие положительных и отрицательных аномалий стока, которые возникают по причинам, не зависящим от поля осадков.

Критерии оценки типового лабораторного задания:

Зачтено - обучающийся в полной мере владеет функциональными возможностями программного обеспечения, выполнение отдельных пунктов контрольной работы не вызывает затруднений, в ответе может допускать незначительные ошибки в применении отдельных операторов Vertical Mapper. Контрольная работа выполнена в отведенное время. Показанные знания имеют системный характер, логичны и полны.

Не зачтено - Обучающийся частично владеет функциональными возможностями программного обеспечения, объяснение и выполнение отдельных пунктов контрольной работы вызывает существенные затруднения, в ответе допускаются значительные ошибки в применении отдельных операторов Vertical Mapper. Ответ на контрольно-измерительный материал содержит существенные ошибки. Обучающийся демонстрирует отрывочные, фрагментарные знания

устного опроса

- 1 .Понятие о цифровых моделях геополей.
- 2.Исторический опыт создания цифровых моделей геополей.
- 3. Свойства географических полей и области их возможного применения в географии и геоэкологии.
 - 4. Цифровые модели рельефа.
 - 5.Знакомство с функциональными возможностями модулей построения геополей.
 - 6.Интерполяция, экстраполяция и аппроксимация данных.
 - 7. Локализация модели. Качество данных.
- 8.Триангуляция, средневзвешенная интерполяция, кригинг, кусочно-полиномиальное сглаживание.
- 9.Освоение принципов выбора способов интерполяции при различном пространственном характере размещения данных.
 - 10. Равномерное, линейное, кластеризованное распределение.

Критерии оценки устного опроса:

Зачтено – обучающийся уверенно отвечает на вопросы, свободно ориентируется в базовой терминологии геоинформатики и геоинформационных систем. Дополнительные вопросы не вызывают затруднений. Может допускать незначительные ошибки в ответах.

Не зачтено – обучающийся затрудняется отвечать на вопросы, не может привести примеры, иллюстрирующие положения ответа, терминологию геоинформатики и геоинформационных систем. Ответ на вопрос содержит существенные ошибки. Дополнительные вопросы вызывают серьезные затруднения.

Технология проведения промежуточной аттестации включает случайный выбор КИМа, подготовку и устный ответ по теоретическим вопросам, а также решение типового лабораторного задания с использованием вычислительной техники.

Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации:

Для оценивания результатов обучения на зачете с оценкой используются следующие критерии:

- владение понятийным аппаратом, который применяется в области цифрового моделирования и использования цифровых моделей географических полей;
- способность иллюстрировать ответ примерами, фактами, данными научных исследований;
- применять теоретические знания для решения практических задач в сфере использования цифровых моделей географических полей, связанных с состоянием окружающей среды.

Для оценивания результатов обучения на зачете с оценкой используется 4-балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Соотношение показателей, критериев и шкалы оценивания результатов обучения

	Уровень	
Критерии оценивания компетенций	сформиро-	Шкала
	ванности	оценок
	компетенций	
Обучающийся в полной мере владеет понятийным аппара-	Повышен-	Отлично
том в области цифровых моделей географических полей,	ный уровень	
иллюстрирует ответ примерами, фактами данными научных		
исследований; может обосновать применение различных		
моделей геополей, способов их создания и использования.		
При подготовке к зачету обучающийся пользовался основ-		
ным учебником и дополнительной литературой. По дискус-		
сионным вопросам создания геополей имеет собственное		
мнение и способен его аргументированно отстаивать. Про-		
явленные знания логичны, связаны с практическими навы-		
ками. Знания системные.		
Обучающийся владеет понятийным аппаратом в области	Базовый	Хорошо
цифровых моделей геополей, может иллюстрировать ответ	уровень	,
некоторыми примерами, фактами, данными научных иссле-		
дований в которых допускает ошибки; может обосновать		
применение знаний о геополях в сфере составления карто-		
графических произведений и их использования, но это тре-		
бует наводящих вопросов. При подготовке к зачету обучаю-		
щийся пользовался основным учебником, с дополнительной		
литературой знаком слабо. По дискуссионным вопросам со-		
здания геополей собственное мнение отсутствует. Прояв-		
ленные знания связаны с практическими навыками.		
Обучающийся частично владеет понятийным аппаратом в	Пороговый	Удовле-
области цифровых моделей геополей, затрудняется иллю-	уровень	твори-
стрировать ответ примерами, фактами, данными научных		тельно
исследований в области создания геополей, не может обос-		
новать применение теоретических знаний о геополях в сфе-		
ре составления картографических произведений и их ис-		
пользования. В ответе допускает существенные ошибки		
принципиального характера. При подготовке к зачету обу-		
чающийся пользовался только основным учебником, с до-		
полнительной литературой не знаком. С дискуссионными		
вопросами создания геополей не знаком. Проявленные зна-		
ния слабо связаны с практическими навыками.		
Ответ на контрольно-измерительный материал содержит		Неудо-
существенные ошибки. Обучающийся демонстрирует отры-		влетво-
вочные, фрагментарные знания		pu-
		тельно