МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой оптики и спектроскопии

_(Овчинников О.В.)

14.06.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.06 Люминесценция: материалы и сенсорика

- 1. Код и наименование направления подготовки / специальности:
- 12.04.03 Фотоника и оптоинформатика
- **2.** Профиль подготовки / специализация: <u>Материалы и устройства фотоники и</u> оптоинформатики
- 3. Квалификация (степень) выпускника: высшее образование (магистр)
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

кафедра оптики и спектроскопии

6. Составители программы: <u>Смирнов Михаил Сергеевич, доктор физикоматематических наук, профессор,</u>

Кондратенко Тамара Сергеевна, кандидат физико-математических наук, доцент

7. Рекомендована: НМС физического ф-та ВГУ протокол № 6 от 13.06.2024

отметки о продлении

9. Цели и задачи учебной дисциплины:

<u>Целью</u> освоения дисциплины является формирование у студентов знаний об основных закономерностях молекулярной люминесценции, люминесценции кристаллов и квантоворазмерных структур; а также представлений методах люминесцентного анализа и возможностях его применения для приложений сенсорики.

Задачи учебной дисциплины:

- сформировать представление о процессах и механизмах люминесценции в различных материалах;
 - сформировать умение пользоваться методами люминесцентного анализа;
 - овладеть навыками применения люминесцентных методов в области сенсорики.
- **10. Место учебной дисциплины в структуре ООП:** часть, формируемая участниками образовательных отношений, блок Б1.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название	Код(ы)	Индикатор(ы)	Планируемые результаты
	компетенции			обучения
ПК-2	Способен экспериментально исследовать перспективные материалы и моделировать процессы в устройствах фотоники и оптоинформатики	ПК-2.1	Ставит задачи и определяет набор параметров, с учетом которых должно быть проведено моделирование процессов, явлений и особенностей работы устройств фотоники и оптоинформатики	знать: фундаментальные законы люминесценции молекул, кристаллов и квантоворазмерных объектов уметь: применять теоретические знания для постановки задач исследовательской деятельности владеть: навыками интерпретации результатов исследований
ПК-3	Способен выбирать научно- исследовательское и технологическое оборудование с учетом особенностей нанотехнологических процессов создания материалов и устройств фотоники и оптоинформатики	ПК-3.1	Проводит научные исследования в области фотоники, используя специализированное исследовательское оборудование, приборы и установки	знать: технические возможности существующего оборудования, необходимого для исследований материалов фотоники уметь: формулировать техническое задание на проведение исследований материалов для устройств фотоники владеть: методиками экспериментальной проверки выбранных технологических решений производства оптических приборов, исследования параметров наноструктурных материалов в соответствии с самостоятельно выбранной и утвержденной методикой

ПК-4	Способен	ПК-4.1	Производит	знать: принципы работы,
	разрабатывать		согласование	возможности и назначение
	новые технологии		возможности и порядка	специализированного
	создания оптических		использования	оборудования и приборов для
	сред, материалов и		лабораторного	фотонных и оптических
	устройств фотоники		оборудования для	исследований
	и оптоинформатики		исследовательских и	уметь: подбирать
			экспериментальных	комплектующие и оборудование
			работ по анализу	исходя из поставленной задачи
			материалов и	и доступных ресурсов
			апробированию	владеть: современными
			технологических	методиками люминесцентного
			процессов	анализа
		ПК-4.2	Формулирует	
			техническое задание	
			на проведение	
			исследований	
			материалов для	
			устройств фотоники и	
			оптоинформатики для	
			экспериментальной	
			проверки	
			технологических	
			процессов	
		ПК-4.3	Производит	
			экспертную оценку	
			результатов	
			исследовательских	
			работ и принимает	
			решение о выборе	
			оптимального	
			варианта	
			технологического	
			процесса	

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — <u>3 / 108</u>

Форма промежуточной аттестации зачет с оценкой

13 Трудоёмкость по видам учебной работы

			Трудоемкость		
Вид уч	ебной работы	Всего	По семестрам		
		Doelo	2		
Аудиторные занятия		64	64		
	лекции	32	32		
в том числе:	практические	-	-		
	лабораторные	32	32		
Самостоятельная	і работа	44	44		
Форма промежуточной аттестации			зачет с оценкой		
Итого:		108	108		

13.1 Содержание разделов дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК					
1. Лекции								
1.	1. Введение. Определение понятия «люминесценция».							
		Физическая природа люминесценции. Спектральная плотность излучения. Спектры люминесценции. Аппаратура для регистрации спектров люминесценции.						
2.	Основные законы молекулярной люминесценции	Электронная, колебательная и вращательная энергия молекул. Представление о мультиплетности, диаграмма Яблонского. Потенциал Морзе для двухатомной молекулы, неадиабатичность. Принцип Франка-Кондона. Законы молекулярной люминесценции. Люминесценция молекул с большим стоксовым сдвигом.						
3	Кинетика молекулярной люминесценции	Кинетика мономолекулярной люминесценции. Кинетика бимолекулярной люминесценции.						
4	Теория переноса энергии	Тушение молекулярной люминесценции. Безызлучательный перенос энергии электронного возбуждения. Эффект Фано. Уравнение Штерна-Фольмера.						
5	Люминесценция кристаллов	Особенности люминесценции кристаллов. Дефекты в кристаллах. Механизмы люминесценции кристаллов. Рекомбинация						
6	Люминесценция квантовых точек	Механизмы люминесценции квантовых точек. Природа стоксова сдвига. Связь со структурой зоны Бриллюэна массивного полупроводника.						
7	Оптические сенсоры	Принцип работы оптического сенсора и его характеристики: рабочий диапазон, время отклика, чувствительность, селективность, предел обнаружения, линейный диапазон. Нанотехнологии и наноматериалы для сенсорики. Фосфоресценция синглетного кислорода. Сенсоры активных форм кислорода						
		2. Лабораторный практикум						
8	Законы молекулярной люминесценции	Проверка закона независимости спектра люминесценции от длины волны возбуждения, проверка правила зеркальной симметрии Лёвшина. Определение 0-0 перехода красителя метиленового голубого						
9	Определение константы статического тушения люминесценции.	Изучение механизмов тушения молекулярной люминесценции. Проверка выполнения уравнения Штерна-Фольмера. Определение константы статического тушения люминесценции красителя 1 в присутствии красителя 2.						
10	Фотосенсибилизация образования синглетного	Изучение фосфоресценции синглетного кислорода. Знакомство с сенсорами активных форм кислорода.						

кислорода.	Сенсоры
активных	форм
кислорода	

13.2. Разделы дисциплины и виды занятий

Nº		Виды занятий (часов)					
П/ П	Наименование раздела дисциплины	Лекции	Практи- ческие	Лабора- торные	Самосто- ятельная работа	Кон- троль	Все
1.	Введение.	2			6		10
2.	Основные законы молекулярной люминесценции	4			4		8
3.	Кинетика молекулярной люминесценции	4			4		8
4.	Теория переноса энергии	6			4		10
5.	Люминесценция кристаллов	4			4		8
6.	Люминесценция квантовых точек	4			4		12
7	Оптические сенсоры	8			6		8
8	Законы молекулярной люминесценции			12	4		16
9	Определение константы статического тушения люминесценции.			10	4		14
10	Фотосенсибилизация образования синглетного кислорода. Сенсоры активных форм кислорода			10	4		14
	Итого	32	0	32	44		108

14. Методические указания для обучающихся по освоению дисциплины

Основными этапами освоения дисциплины являются:

- 1) Лекции. В ходе лекционных занятий студенту необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве. Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций
- 2) Практические занятия. При подготовке к практическим занятиям студентам рекомендуется: внимательно прочесть конспект лекции по теме, изучить рекомендованную литературу; изучить методическую литературу по теме практического занятия, разобрать примеры решения практических задач; проверить свои знания, отвечая на вопросы для самопроверки; если встретятся незнакомые термины, обязательно обратиться к словарю и зафиксировать их в тетради; при затруднениях сформулировать вопросы к преподавателю
- 3) Самостоятельная работа студента. Изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств научной информации.
- 4) Подготовка к аттестации. В ходе подготовки к текущим аттестациям и промежуточной аттестации студенту рекомендуется активно использовать электронный образовательный портал Moodle электронная среда дисциплины, с предоставлением презентаций лекций, заданий для выполнения практических работ, дополнительного теоретического материала и нормативно-правовых документов по темам и перечней вопросов для подготовки к текущим аттестациям и промежуточной аттестации. Также студенту рекомендуется использовать весь набор методов и средств современных информационных технологий

для изучения отечественной и зарубежной литературы по дисциплине, оценки и анализа ее текущего состояния и перспектив развития. Ему предоставляется возможность работать в компьютерных классах факультета (313а аудитория), иметь доступ к Интернетресурсам и электронной почте, использовать имеющиеся на кафедре оптики и спектроскопии физического факультета информационные технологии, использовать ресурсы Зональной научной библиотеки ВГУ, в том числе электронно-библиотечные системы.

15. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

№ п/п	Источник
1	Сидоров, А. И. Сенсорная фотоника : учебное пособие : [16+] / А. И. Сидоров ; Университет ИТМО. – Санкт-Петербург : Университет ИТМО, 2019. – 99 с. : ил., табл., схем. – Режим доступа: по подписке. –
	URL: https://biblioclub.ru/index.php?page=book&id=566783
2	Пустоваров, В. А. Люминесценция твердых тел: учебное пособие / В. А. Пустоваров; науч. ред. И. И. Мильман; Уральский федеральный университет им. первого Президента России Б. Н. Ельцина. – Екатеринбург: Издательство Уральского университета, 2017. –
	131 с. : схем., табл., ил. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=696088 .

б) дополнительная литература:

№ п/п	Источник				
3	Люминесцентный анализ / под ред. М.А. Константиновой-Шлезингер // М.:				
J	Государственное издательство физико-математической литературы, 1961. – 400 с.				
4	Киреев, П.С. Физика полупроводников / П.С. Киреев // М.: Высшая школа, 1975. – 584 с.				
5	Шалимова, К.В. Физика полупроводников / К.В. Шалимова // СПб.: Лань, 2010. – 390 с.				
6	Лакович, Дж. Основы флуоресцентной спектроскопии / Дж. Лакович // М.: Мир, 1986. –				
	496 c.				
7	Паркер, С. Фотолюминесценция растворов / С. Паркер // М.: Мир, 1972. – 512 с.				
8	Гришаева, Т.И. Методы люминесцентного анализа / СПб.: АНО НПО «Профессионал»,				
	2003. – 226 c.				
9	<u>Панков, Ж.</u> Оптические процессы в полупроводниках / Ж. Панков ; пер. с англ. под ред.				
	Ж.И. Алферова и В.С. Вавилова .— Москва. : Мир, 1973 .— 456 с.				
10	<u>Галанин, М.Д</u> . Люминесценция молекул и кристаллов / М.Д. Галанин // Рос.акад.наук,				
10	Физ.ин-т им. П.Н.Лебедева, УНЦ "Фундамент. оптика и спектроскопия". – Москва. 1999. – 199 с.				
	Газенаур, Е. Г. Методы исследования материалов : учебное пособие : [16+] /				
11	Е. Г. Газенаур, Л. В. Кузьмина, В. И. Крашенинин. – Кемерово : Кемеровский				
' '	государственный университет, 2013. – 336 с. – Режим доступа: по подписке. –				
	URL: https://biblioclub.ru/index.php?page=book&id=232447				
10	Степанов, Б. И. Введение в теорию люминесценции / Б. И. Степанов. – Минск :				
12	Издательство Академии наук БССР, 1963. – 446 с. – Режим доступа: по подписке. –				
	URL: https://biblioclub.ru/index.php?page=book&id=474164				

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник		
13	Электронно-библиотечная система BOOK.ru <u>https://www.book.ru/</u>		
14	ЭБС «ПЛАТФОРМА ЮРАЙТ» – https://urait.ru/		
15	ЭБС Лань – https://e.lanbook.com/		
16	ЭБС «Электронная библиотека технического ВУЗа» («ЭБС «Консультант студента») – http://www.studentlibrary.ru/		
17	ЭБС «Университетская библиотека Online» – https://biblioclub.ru/		
18	Национальный цифровой ресурс "РУКОНТ" – <u>http://rucont.ru</u>		

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

Nº	Источник
п/п	
1	Овчинников О.В., Смирнов М.С. Основы фотоники полупроводниковых коллоидных квантовых точек: учебное пособие / О.В. Овчинников, М.С. Смирнов; Министерство науки и высшего образования Российской Федерации, Воронежский государственный университет, кафедра оптики и спектроскопии. – Воронеж: Издательский дом ВГУ, 2023. 133 с.
2	Амосова, Л. П. Введение в физику оптоэлектронных и фотонных устройств для информационных систем: учебное пособие: / Л. П. Амосова // Университет ИТМО. — Санкт-Петербург: Университет ИТМО, 2019. — 127 с. : ил., схем. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=566765

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

В учебном процессе используются следующие образовательные технологии. По образовательным формам: лекционные и практические занятия. Преобладающими методами и приемам обучения являются: объяснительно-иллюстративные (объяснение, показ – демонстрация учебного материала и др.); активные (анализ учебной и научной литературы, составление схем и др.) и интерактивные, в том числе и групповые (взаимное обучение в форме подготовки и обсуждения докладов); информационные; мультимедийные (работа с сайтами академических структур, научно-исследовательских организаций, электронных библиотек и др., разработка презентаций, сообщений и докладов, работа с электронными обучающими программами и т.п.).

Организационная структура лекционного занятия:

- 1. Формулировка темы, целей занятия, постановка проблемного вопроса.
- 2. Разъяснение вопросов теоретического и практического плана для решения поставленной проблемы.
 - 3. Рассмотрение путей решения проблемного вопроса на конкретных примерах.
 - 4. Заключение, формулировка выводов.
- 5. Формулировка задания для самостоятельной домашней работы. Озвучивание темы следующего занятия.

Организационная структура практического занятия:

- 1. Формулировка темы и теоретическое изучение материала лабораторной работы.
- 2. Проверка готовности студентов к занятию их теоретическая готовность к выполнению работы.
- 3. Основная часть занятия, где студенты выполняют лабораторную работу, а контроль их исполнения (полнота и качество) и помощь осуществляет преподаватель.
- 4. Заключительная часть подведение преподавателем итогов занятия, получение студентами заданий на самостоятельную работу.

Текущий контроль проводится путем проверки выполнения домашнего задания, входного контроля (в виде самостоятельных и контрольных работ, докладов и рефератов).

При реализации дисциплины с использованием дистанционных образовательных технологий используются инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru) и/или "МООК ВГУ" (https://mooc.vsu.ru), сервисы видеоконференций (BigBlueButton, Zoom, Discord и др.), электронная почта, мессенджеры и соцсети.

1	Поисковая система e-library.ru
2	Поисковая система google.ru
3	Архив научных журналов http://arch.neicon.ru/
4	Единое окно доступа к образовательным ресурсам. Библиотека http://window.edu.ru/
5	Электронный каталог ЗНБ ВГУ https://www.lib.vsu.ru/
6	Электронная библиотека Попечительского совета механико-математического факультета МГУ
	lib.mexmat.ru

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория (ауд. 129): специализированная мебель, проектор, ноутбук, экран. WinPro 8, OfficeStandard 2019, «Антиплагиат.ВУЗ», MathWorks TotalAcademicHeadcount 394018, г.Воронеж, площадь Университетская, д.1, пом.1, этаж – 1, пом. 141

Лаборатория люминесцентной спектроскопии (ауд. 132): специализированная мебель, спектрофлуориметр на базе монохроматоров МДР-41, МДР-4 и ФЭУR955P, работающего в режиме счета фотонов; волоконно-оптический спектральный комплекс OceanOpticsнa базе спектрометра USB-2000+XR1 с источником излучения USB-DT, и набором зондов для измерения диффузного ISP-80-8-R и зеркального отражения RSS-VA и люминесценции R400-7-SR, пропускания и люминесценции жидких и твёрдых образцов CUV-VAR и CUV-ALL-UV; аналитического качестваУПВА-5: для производства воды двухступенчатые насос VE-2100N (Value); вакуумный насос VE-215 (Value); весы OHAUS PX224/E аналитические; спектрометр волоконно-оптический VISION2GO NIR спектрометр 950-1630 нм (P-Аэро). блоки питания лабораторные HY3005 (Mastech), блоки питания лабораторные HY3020 (Mastech), лазерный модуль/блок пит., поворотн. креплен.; лазерный модуль LM-650180 (блок пит., креп. поворотн.); вытяжной шкаф; центрифуги лабораторные; 150МИ; оптический стол; Набор цветных стекол; Лабораторный стенд: "Люминесценция"; Лазер ЛГИ-21; Осциллограф цифровой Rigol; Осциллограф АКИП-4122/12; Ультразвуковая ванна ПСБ-1322-05; Ультразвуковая ванна ПСБ-1360-05. WinPro 8, OfficeStandard «Антиплагиат.ВУЗ», MathWorks 2019, TotalAcademicHeadcount, ANSYSHFAcademicResearch, Пакет ПО для управления спектрофотометром USB 2000+ обработки данных, (OceanOptics), анализа И Пакет ПО для управления ДЛЯ спектрометрическим комплексом на базе монохроматора МДР-41 (ОКБ Спектр) 394018, г.Воронеж, площадь Университетская, д.1, пом.І, этаж – 1, пом. 28

Учебная аудитория (ауд. 133): специализированная мебель, компьютер, мультимедиапроектор, экран. WinPro 8, OfficeStandard 2019, «Антиплагиат.ВУЗ» 394018, г.Воронеж, площадь Университетская, д.1, пом.І, этаж – 1, пом. 136

19. Оценочные средства для проведения текущего контроля успеваемости и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Введение	ПК-2 ПК-3 ПК-4	ПК-2.1 ПК-3.1 ПК-4.1 ПК-4.2 ПК-4.3	Домашние (самостоятельные) задания для контроля освоения дисциплины
2.	Основные законы молекулярной люминесценции	ПК-2 ПК-3 ПК-4	ПК-2.1 ПК-3.1 ПК-4.1	Домашние (самостоятельные) задания для контроля освоения дисциплины

№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции ПК-4.2	Оценочные средства	
			ПК-4.2 ПК-4.3		
3.			ПК-4.3 ПК-2.1		
J.	Кинетика	ПК-2	ПК-2.1 ПК-3.1		
		ПК-3	ПК-3.1 ПК-4.1	Домашние (самостоятельные) задания	
	молекулярной люминесценции	ПК-4	ПК-4.1 ПК-4.2	для контроля освоения дисциплины	
	люминесценции		ПК-4.2 ПК-4.3		
4.	Теория переноса		ПК-4.3		
7.	энергии	ПК-2	ПК-2.1 ПК-3.1		
	энергии	ПК-3 ПК-4	ПК-4.1	Домашние (самостоятельные) задания для контроля освоения дисциплины	
			ПК-4.2		
			ПК-4.3		
5.	Люминесценция		ПК-4.3		
0.	кристаллов	ПК-2	ПК-3.1		
	кристаллов	ПК-3 ПК-4	ПК-4.1	Домашние (самостоятельные) задания	
			ПК-4.2	для контроля освоения дисциплины	
			ПК-4.3		
6.	Люминесценция		ПК-4.3		
0.	квантовых точек	ПК-2	ПК-3.1		
	RBUITOBBIX TO TEX	ПК-3 ПК-4	ПК-3.1 ПК-4.1	Домашние (самостоятельные) задания	
			ПК-4.2	для контроля освоения дисциплины	
			ПК-4.3		
7.	Оптические сенсоры		ПК-2.1		
		ПК-2	ПК-3.1	Домашние (самостоятельные) задания	
		ПК-3	ПК-4.1	для контроля освоения дисциплины	
		ПК-4	ПК-4.2	Контрольная работа (лабораторная	
			ПК-4.3	работа)	
8.	Законы молекулярной		ПК-2.1		
	люминесценции	ПК-2	ПК-3.1	Домашние (самостоятельные) задания	
		ПК-3 ПК-4	ПК-4.1	для контроля освоения дисциплины Контрольная работа (лабораторная	
			ПК-4.2		
			ПК-4.3	работа)	
9.	Определение		ПК-2.1		
•.	константы	ПК-2	ПК-3.1	Домашние (самостоятельные) задания	
	статического тушения	ПК-3	ПК-4.1	для контроля освоения дисциплины	
	люминесценции.	ПК-4	ПК-4.2	Контрольная работа (лабораторная	
			ПК-4.3	работа)	
10.	Фотосенсибилизация				
	образования	ПК-2	ПК-2.1	Домашние (самостоятельные) задания	
	синглетного	ПК-3	ПК-3.1	для контроля освоения дисциплины	
	кислорода. Сенсоры	ПК-4	ПК-4.1	Контрольная работа (лабораторная	
	активных форм		ПК-4.2	работа)	
	кислорода		ПК-4.3		
	Промежуточна	ая аттестация	Комплект КИМ (Тест + список		
	форма контроля -			вопросов, требующих развернутого	
терина петиротите од тог о одотног				ответа)	

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций. Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме: устного опроса (индивидуальный опрос). Критерии оценивания приведены ниже. Промежуточная аттестация

проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования. Контрольно-измерительные материалы промежуточной аттестации включают в себя тесты и теоретические вопросы, позволяющие оценить уровень полученных знаний, а также практическое задание, позволяющее оценить степень сформированности умений и навыков. При оценивании используются качественные шкалы оценок. Критерии оценивания приведены в п. 20.2.

Для оценивания результатов обучения на зачете учитываются следующие показатели:

- 1) знание учебного материала, владение понятийным аппаратом и теоретическими основами волновых явлений:
- 2) умение связывать теорию с практикой;
- 3) умение иллюстрировать ответ примерами, фактами, данными современных научных исследований в оптике;
- 4) умение применять основные законы и анализировать результаты наблюдений и экспериментов
- 5) владение понятийным аппаратом и умение применять теоретические знания для решения практических задач.

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

- 1. Посещаемость лекционных занятий. Проверка преподавателем конспектов по пройденному материалу. Домашние (самостоятельные) задания для контроля освоения дисциплины.
- 2. Выполнение лабораторных работ (выполнение и оформление лабораторной работы). Контрольная работа (практические задания, устный опрос по контрольным вопросам к лабораторной работе).

Домашние (самостоятельные) задания формулируются преподавателем по окончании занятия для закрепления обучающимся пройденного материала (содержит перечень задач для выполнения / вопросов) или подготовке к последующим занятиям. На дальнейшем соответствующем занятии преподаватель осуществляет полную/выборочную проверка выполнения обучающимися домашних (самостоятельных) заданий. Полная проверка проводится в форме тестирования с ограничением по времени. Выборочная проверка осуществляется по средствам устного опроса выборочного количества студентов. В случае невыполнения обучающимся домашнего (самостоятельного) задания преподаватель не оценивает работу обучающего на текущем м занятии выше 2 баллов (положительная оценка (3/4/5) может быть выставлена по результатам выполнения индивидуального задания). Типовые задания теста и вопросы для проведения опроса представлены в Приложении 1 к рабочей программе дисциплины.

Контрольная работы включает в себя выполнение и представление практического задания. Ее выполнение оценивается в два этапа:

- 1) выполнение и оформление лабораторной работы;
- 2) защита лабораторной работы (обсуждение практических заданий и полученных результатов, устный опрос по контрольным вопросам к практической работе).

Критерии оценивания контрольная работы (практических заданий):

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Все пункты лабораторной работы выполнены верно, оформлены в соответствии с требованиями, указанными преподавателем, сделаны выводы. Обучающийся в полной мере владеет понятийным аппаратом и теоретическими основами дисциплины, способен иллюстрировать ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения практических задач в области современной физики.	Повышенный уровень	Отлично
Все пункты лабораторной работы выполнены верно, оформлены с незначительными нарушениями требований, указанных преподавателем, сделаны выводы. Недостаточно продемонстрировано теоретических основ дисциплины.	Базовый уровень	Хорошо
Пункты лабораторной работы выполнены частично верно, оформлены с нарушением требований, указанных преподавателем, сделаны выводы. Имеет не полное представление о теоретических основах, допускает существенные ошибки.	Пороговый уровень	Удовлетвори- тельно
Пункты лабораторной работы не выполнены или выполнены неверно, оформлены с нарушением требований, указанных преподавателем, выводы не сделаны или не полные по содержанию. Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые ошибки.	_	Неудовлетвори- тельно

20.2. Промежуточная аттестация

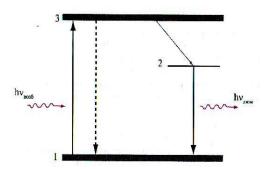
Для оценивания результатов обучения на зачёте используются следующие показатели:

- 1. знание учебного материала, владение понятийным аппаратом и теоретическими основами дисциплины;
 - 2. умение связывать теорию с практикой;
- 3. умение описывать основные характеристики, методики контроля и параметры фотоприёмников;
- 4. владение знаниями о технологическом процессе проектирования устройств фотоники, включая основные термины и определения жизненного цикла изделия, представления о разработке технологического маршрута и операционной карты;
- 5. умение читать чертежи и анализировать технические условия, составлять маршрутные и операционные карты технологического процесса конструирования изделия фотоники, используя соответствующую конструкторскую документацию и навыки работы с ГОСТами.

Промежуточная аттестация по дисциплине проходит в 2 последовательных этапа:

- 1) тест и расчетные практические задачи;
- 2) устный опрос, с применением контрольно-измерительных материалов в форме билетов, содержащих по два вопроса к зачету из следующего перечня:
 - 1. Определение понятия «люминесценция». Физическая природа люминесценции.
 - 2. Спектральная плотность излучения. Спектры люминесценции.
 - 3. Аппаратура для регистрации спектров люминесценции.
- 4. Электронная, колебательная и вращательная энергия молекул. Представление о мультиплетности, диаграмма Яблонского.
 - 5. Потенциал Морзе для двухатомной молекулы, неадиабатичность.

- 6. Принцип Франка-Кондона.
- 7. Законы молекулярной люминесценции.
- 8. Люминесценция молекул с большим стоксовым сдвигом.
- 9. Кинетика мономолекулярной люминесценции. Кинетика бимолекулярной люминесценции.
- 10. Тушение молекулярной люминесценции. Безызлучательный перенос энергии электронного возбуждения.
 - 11. Эффект Фано.
 - 12. Уравнение Штерна-Фольмера.
 - 13. Особенности люминесценции кристаллов.
 - 14. Дефекты в кристаллах. Механизмы люминесценции кристаллов. Рекомбинация.
 - 15. Механизмы люминесценции квантовых точек.
- 16. Природа стоксова сдвига. Связь со структурой зоны Бриллюэна массивного полупроводника.
- 17. Принцип работы оптического сенсора и его характеристики: рабочий диапазон, время отклика, чувствительность, селективность, предел обнаружения, линейный диапазон.
 - 18. Нанотехнологии и наноматериалы для сенсорики.
 - 19. Фосфоресценция синглетного кислорода. Сенсоры активных форм кислорода
 - 20. Сенсоры активных форм кислорода.


Верно выполнив тест, обучающийся получает КИМ, готовит ответы на вопросы КИМа и отвечает преподавателю.

Требования к выполнению заданий, шкалы и критерии оценивания

	Уровень	
Критерии оценивания компетенций	сформирован	Шкала оценок
	ности	
	компетенций	
Посещение лекционных и практических занятий.	Повышенный	Отлично
Ответ на вопрос контрольно-измерительного материала во	уровень	
время экзамена. Ответы на дополнительные вопросы.		
Обучающийся в полной мере владеет понятийным аппаратом и		
теоретическими основами дисциплины, способен		
иллюстрировать ответ примерами, фактами, данными		
научных исследований, применять теоретические знания для		
решения практических задач в области современной физики.		
Ответ на контрольно-измерительный материал не	Базовый	Хорошо
соответствует одному из перечисленных показателей, но	уровень	
обучающийся дает правильные ответы на дополнительные		
вопросы. Недостаточно продемонстрировано теоретических		
основ дисциплины.		
Ответ на контрольно-измерительный материал не	Пороговый	Удовлетвори-
соответствует двум из перечисленных показателей,	уровень	тельно
обучающийся дает неполные ответы на дополнительные		
вопросы. Имеет не полное представление о теоретических		
основах, допускает существенные ошибки.		
Ответ на контрольно-измерительный материал не	_	Неудовлетвори-
соответствует выше перечисленным показателям.		тельно
Обучающийся демонстрирует отрывочные, фрагментарные		
знания, допускает грубые ошибки.		

Приложение 1 Типовые тестовые задания

- 1. Излучение, представляющее собой избыток над тепловым излучением тела при данной температуре, называется:
 - а) ионизирующим излучением;
 - б) люминесценцией;
 - в) рентгеновским излучением;
 - г) лазерным излучением.
- 2. Переход из возбужденного состояния молекулы в невозбужденное, сопровождающийся излучением энергии, имеющий самую большую длительность во времени называется:
 - а) флуоресценция;
 - б) колебательная релаксация;
 - в) внутренняя конверсия;
 - г) фосфоресценция.
- 3. На приведенной схеме квантовых переходов при элементарном процессе люминесценции переход 3→2 соответствует:

- а) безызлучательному переходу;
- б) резонансной люминесценции;
- в) спонтанной люминесценции;
- г) метастабильной люминесценции.
- 4. Энергия фотона пропорциональна:
- а) частоте;
- б) длине волны;
- в) скорости фотона.

- 5. Закон С.И. Вавилова гласит, что
- а) форма спектра люминесценции не зависит от длины волны возбуждающего излучения;
 - б) квантовый выход не зависит от длины волны возбуждающего света;
- в) спектр люминесценции сдвинут по сравнению со спектром поглощения в длинноволновую область;
- г) спектры поглощения и флуоресценции зеркально симметричны относительно прямой, перпендикулярной оси частот и проходящей через точку пересечения спектров.
- 6. Метод, использующий соотношение интенсивностей люминесценции двух полос в работе сенсора называется
 - а) логометрическим;
 - б) калориметрическим;
 - в) ратиометрическим;
 - г) полосовым.
- 7. При помощи какого стандартного сенсора возможно детектировать супероксид
 - А) Цитохром С;
 - Б) Люминол;
 - B) AmplexRed;
 - Г) Цитохром А.
- 8. Как от расстояния между донором и акцептором зависит эффективность индуктивного безызлучательного резонансного переноса энергии электронного возбуждения в случае диполь-дипольного взаимодействия?
 - a) ~ \mathbb{R}^4 ;
 - б) ~ R⁻⁶;
 - в) ~ R^5 ;
 - Γ) ~ R^{-5} :
 - $_{\rm J}$) ~ ${\sf R}^6$;
 - e) ~ R^{-4} .
 - 9. Закон Стокса-Ломмеля описывает:

- a) независимость спектра флуоресценции от длины волны возбуждающего света:
- б) смещение спектра флуоресценции в более длинноволновую область по сравнению со спектром поглощения; в) зеркальную симметрию спектров испускания и поглощения;
- г) зависимость формы спектра флуоресценции от длины волны возбуждающего света.
 - 10. Отличительной чертой рекомбинационной люминесценции является
 - а) маленькая полуширина спектра свечения;
 - б) ионизация центра свечения при возбуждении.
 - в) наличие метастабильного уровня.

Вопросы с развернутым ответом, задачи

- 1. Дайте определение понятия «люминесценция»?
- 2. Что представляет собой спектр люминесценции?
- 3. Какой длине волны соответствует энергия излучения 2.1 эВ?
- 4. Перечислите типы люминесценции по виду возбуждения, длительности свечения.
- 5. Решите задачу. Оптическая плотность вещества равна 0,06, а интенсивность люминесценции в 5 раз меньше интенсивности возбуждающего света. Найти квантовый выход люминесценции вещества.
- 6. Решите задачу. Оптическая плотность вещества равна 0.1, а интенсивность люминесценции в 3 раз меньше интенсивности возбуждающего света. Найти квантовый выход люминесценции вещества.
- 7. Как изменится интенсивность фотолюминесценции, если увеличить оптическую плотность образца от 0,1 до 1 при фиксированной длине волны возбуждающего света?
 - 8. Что описывает закон Стокса-Ломмеля?
 - 9. В чем заключается Эффект Фано?
 - 10. Перечислите основные характеристики оптических сенсоров?
- 11. Опишите принцип работы сенсора Цитохром С для детектирования супероксида.