МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой математической физики и информационных технологий

С.А. Переселков

28 06 2024г

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.09 Дискретная математика

1. Код и наименование направления подготовки/специальности:

09.03.01 Информатика и вычислительная техника

2. Профиль подготовки/специализация: <u>Программно-аппаратные средства информационных систем.</u>

- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма обучения: очная
- **5. Кафедра, отвечающая за реализацию дисциплины**: <u>0803 кафедра математической физики и информационных технологий</u>
- **6. Составители программы:** <u>Минин Леонид Аркадьевич, кандидат физикоматематических наук, доцент.</u>
- 7. Рекомендована: НМС физического факультета, протокол №6 от 27.06.2024г.
- 8. Учебный год: <u>2024/2025</u> Семестр(ы): <u>2, 3</u>

9. Цели и задачи учебной дисциплины:

Целью дисциплины является изучение следующих разделов: теория множеств, графы, теория алгоритмов, комбинаторика; логика высказываний; машины Тьюринга; меры сложности алгоритмов; легко и трудноразрешимые задачи без знания которых невозможно осваивать курсы информатики и программирования.

10. Место учебной дисциплины в структуре ООП:

Дискретная математика является теоретической основой компьютерных наук. Методы дискретной математики являются хорошим средством и языком для построения и анализа моделей в различных науках. Курсы, изучаемые параллельно: Линейная алгебра и геометрия, математический анализ, языки программирования.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название	Код(ы)	Индикатор(ы)	Планируемые
	компетенции	, ,	,	результаты
				обучения
ОПК-	Способен	ОПК-	Опирается на основы	Знает_основные
1	применять	1.1	математики, физики,	понятия дискретной
	естественнонаучны		вычислительной техники и	математики и
	еи		программирования при	методы дискретной
	общеинженерные		построении модели	математики, которые
	знания, методы		предметной области в	используются для
	математического		рамках теоретического и	построения моделей
	анализа и		экспериментального	и конструирования
	моделирования,		исследования.	алгоритмов решения
	теоретического и			практических задач.
	экспериментального	ОПК-	Планирует решение	Умеет
	исследования в	1.2	профессиональных задач с	реализовывать
	профессиональной		применением	методы дискретной
	деятельности		естественнонаучных и	математики на ЭВМ.
			общеинженерных знаний,	
			методов математического	
			анализа и моделирования.	
		ОПК-	Анализирует результаты	Владеет навыками
		1.3	теоретического и	квалифицированного
			экспериментального	выбора и адаптации
			исследования предметной	существующих
			области в рамках	методов для
			теоретического и	решения
			экспериментального	практических задач.
			исследования.	

12. Объем дисциплины в зачетных единицах/час. (в соответствии с учебным планом) — 4/144.

Форма промежуточной аттестации: зачёт.

13. Виды учебной работы:

		Трудоемкость				
Вид учебной работы			По семестрам	По семестрам		
		Всего	2 семестр	3 семестр		
Аудиторные	занятия	68	32	36		
5.701	лекции	34	16	18		
В ТОМ	практические	34	16	18		
числе:	лабораторные	0	0	0		
Самостоятельная работа		76	40	36		
в том числе: курсовая работа (проект)		0	0	0		
Форма промежуточной		0	0	0		
аттестации						
Итого:		144	72	72		

13.1. Содержание дисциплины:

п/п			Реализация
	Наименование		раздела
	раздела	Содержание раздела дисциплины	дисциплины с
	дисциплины	•	помощью
			онлайн-курса,
		4 月	ЭУМК *
	Γ_	1. Лекции	
1.1.	Элементы	Основные правила комбинаторики. Размещения,	
	комбинаторики.	перестановки. Сочетания, бином Ньютона.	
		Свойства биномиальных коэффициентов.	
		Комбинации элементов с повторениями. Примеры	
		комбинаторных задач.	
1.2.	Элементы	Основные понятия теории графов. Изоморфизм	
	теории графов.	графов, плоские графы. Операции над графами.	
		Способы задания графов. Эйлеровы и	
		гамильтоновы графы. Задачи о кратчайших путях	
		в графах.	
1.3.	Применение	Правила Кирхгофа. Деревья и главные циклы.	
	теории графов	Расчет цепей с идеальными и реальными ЭДС.	
	для расчета		
	электрических		
	цепей.		
1.4.	Алгоритмы	Методы решения комбинаторных задач.	
	комбинаторики.	Лексикографические алгоритмы. Генерация	
		подмножеств. Реализация алгоритмов генерации	
		подмножеств.	
1.5.	Алгебраически	Полугруппы, группы, кольца, поля. Векторные	

	е структуры.	пространства. Базис, размерность. Преобразования базиса. Линейные операторы и квадратичные формы. Запись преобразования матриц линейных операторов и квадратичных форм в тензорных обозначениях.	
0.4		2. Практические занятия	
2.1.	Элементы комбинаторики.	Основные правила комбинаторики. Размещения, перестановки. Сочетания, бином Ньютона. Свойства биномиальных коэффициентов. Комбинации элементов с повторениями. Примеры комбинаторных задач.	
2.2.	Элементы теории графов.	Основные понятия теории графов. Изоморфизм графов, плоские графы. Операции над графами. Способы задания графов. Эйлеровы и гамильтоновы графы. Задачи о кратчайших путях в графах.	
2.3.	Применение теории графов для расчета электрических цепей.	Правила Кирхгофа. Деревья и главные циклы. Расчет цепей с идеальными и реальными ЭДС.	
2.4.	Алгоритмы комбинаторики.	Методы решения комбинаторных задач. Лексикографические алгоритмы. Генерация подмножеств. Реализация алгоритмов генерации подмножеств.	
2.5.	Алгебраически е структуры.	Полугруппы, группы, кольца, поля. Векторные пространства. Базис, размерность. Преобразования базиса. Линейные операторы и квадратичные формы. Запись преобразования матриц линейных операторов и квадратичных форм в тензорных обозначениях.	

13.2. Темы (разделы) дисциплины и виды занятий:

	Наименование темы (раздела) дисциплины	Виды занятий (часов)				
Nº ⊓/⊓		Лекции	Практичес кие	Лаборатор ные	Самостояте льная работа	Всего
1	Элементы комбинаторики.	8	8	0	18	34
2	Элементы теории графов.	6	6	0	14	26
3	Применение теории графов для расчета электрических цепей.	4	4	0	8	16
4	Алгоритмы комбинаторики.	8	8	0	18	34
5	Алгебраические структуры.	8	8	0	18	34
	Итого:	34	34	0	76	144

14. Методические указания для обучающихся по освоению дисциплины:

При изучении дисциплины рекомендуется использовать следующие средства:

- рекомендуемую основную и дополнительную литературу;
- методические указания и пособия;
- контрольные задания для закрепления теоретического материала;
- электронные версии учебников и методических указаний для выполнения практических работ.

Форма организации самостоятельной работы: подготовка к аудиторным занятиям; выполнение домашних заданий; выполнение контрольных работ.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины:

а) основная литература:

№ п/п	Источник		
1	Яблонский С.В. Введение в дискретную математику: Учеб. Пособие для вузов		
ļ .	– M.: Высшая школа, 010. – 384 c.		
2	Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной		
2	математике: Учеб. пособие. – М.: ФИЗМАТЛИТ, 2009. – 416 с.		
	Борзунов С.В., Кургалин С.Д. Задачи по дискретной математике: Учеб.		
3	пособие. – Воронеж: Издательский дом Воронежского государственного		
	университета, 2014. – 416 с.		

б) дополнительная литература:

№ п/п	Источник
1	Андерсон Джеймс А. Дискретная математика и комбинаторика. – М.:
'	Издательский дом "Вильямс", 2016. – 960 с.
2	Галушкина Ю.И., Марьямов А.Н. Конспект лекций по дискретной математике. –
	М.: Айрис-пресс, 2007. – 176 с.
3	Новиков Ф.А. Дискретная математика для программистов – СПб: Питер, 2009. –
J	304 c.
4	Ерусалимский Я.М. Дискретная математика. Теория, задачи, приложения. – М.:
4	Вузовская книга, 2008. – 268 с.
5	Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. – М:
<u> </u>	ФИЗМАТЛИТ, 2008. – 320 с.
6	Курош А.Г. Курс высшей алгебры. – СПб.: Лань, 2011. – 432 с.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Ресурс
1	www.lib.vsu.ru – ЗНБ ВГУ
2	http://e.lanbook.com/ - ЭБС «Лань»
3	http://www.book.ru/ - ЭБС «Book.ru»

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник			
1	Судоплатов С.В. Дискретная математика / С.В. Судоплатов; Овчинникова Е. В. — 4-е изд. — Новосибирск: НГТУ, 2012. — 278 с. — (Учебники НГТУ). — ISBN 978-5-7782-1815-4 .—			
	<pre><url:http: biblioclub.ru="" index.php?page="book&id=135675"></url:http:></pre>			
	Бережной В. В. Дискретная математика: учебное пособие (курс лекций) / В.В.			
2	Бережной; А.В. Шапошников. — Ставрополь: СКФУ, 2016. — 199 с. —			
	<url:http: biblioclub.ru="" index.php?page="book&id=466802">.</url:http:>			

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

При реализации дисциплины могут проводиться различные типы лекций (вводная, обзорная и т.д.), семинарские занятия (проблемные, дискуссионные и т.д.), применяться дистанционные образовательные технологии в части освоения лекционного материала, проведения текущей аттестации, самостоятельной работы по дисциплине или отдельным ее разделам и т.д. При применении ЭО и ДОТ необходимо в п.15 в) указать используемые ресурсы (см. пример выше)

18. Материально-техническое обеспечение дисциплины:

Лекционная аудитория.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины (модуля)	Компетенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	<u>Разделы 1-5</u>		ОПК-1.1	
2.	<u>Разделы 1-5</u>	ОПК-1 ОПК-1.2 П		Перечень вопросов; Практическое задание; Контрольная работа.
3.	<u>Разделы 1-5</u>		ОПК-1.3	
	Промежут форма к			

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Собеседование по экзаменационным билетам (по билетам к зачету)

20.3 Перечень вопросов к экзамену (зачету):

- 1. Основные правила комбинаторики.
- 2. Размещения, перестановки.
- 3. Сочетания, бином Ньютона.
- 4. Свойства биномиальных коэффициентов.
- 5. Комбинации элементов с повторениями.
- 6. Примеры комбинаторных задач.
- 7. Основные понятия теории графов.
- 8. Изоморфизм графов, плоские графы.
- 9. Операции над графами.
- 10. Способы задания графов.
- 11. Эйлеровы и гамильтоновы графы.
- 12. Задачи о кратчайших путях в графах.
- 13. Правила Кирхгофа.
- 14. Деревья и главные циклы.
- 15. Расчет цепей с идеальными и реальными ЭДС.
- 16. Методы решения комбинаторных задач.
- 17. Лексикографические алгоритмы.
- 18. Генерация подмножеств.
- 19. Реализация алгоритмов генерации подмножеств.
- 20. Полугруппы, группы, кольца, поля.
- 21. Векторные пространства.
- 22. Базис, размерность.
- 23. Преобразования базиса.
- 24. Линейные операторы и квадратичные формы.
- 25. Запись преобразования матриц линейных операторов и квадратичных форм в тензорных обозначениях.

20.4 Комплект заданий для контрольной работы.

Контрольная работа №1

<u>Задание 1 (10 баллов)</u>. Запишите отрицание предиката P(n) = {натуральное число n является простым}.

Задание 2 (20 баллов). Выпишите все подмножества множества A = {a, b, c}. Задание 3 (20 баллов). В классе 29 учеников. Из них посещают спортивную секцию 13 человек, кружок авиамоделирования — 6, дополнительные занятия по математике — 19. Двое занимаются авиамоделированием и спортом, 7 — спортом и математикой, 4 — авиамоделированием и математикой. Никто из учащихся не посещает все внеклассные мероприятия. Сколько учеников посещает только один факультатив и сколько не интересуется ими вообще?

Контрольная работа №2

Задание 1 (10 баллов). Выпишите матрицу смежности и список смежности графа G(V,E) на множестве вершин V = {a,b,c,d,e} со множеством рёбер E = {ac,bd,be,de}. Задание 2 (20 баллов). Является ли полный граф Kn для n > 1 эйлеровым? гамильтоновым? Задание 3 (20 баллов). Чему равны хроматическое число и хроматический индекс графа Петерсена P10?

Контрольная работа №3

<u>Задание 1 (10 баллов)</u>. Докажите, что sin(n2 + 1) O(∈ 1).

<u>Задание 2 (20 баллов).</u> Докажите, что через штрих Шеффера может быть выражена любая функция булевой алгебры. Задание 3 (20 баллов). Оцените асимптотическую сложность сортировки вставками.

Для оценивания результатов обучения при промежуточной аттестации используются следующие показатели:

- 1) знание основных понятий дискретной математики и методов дискретной математики, которые используются для построения моделей и конструирования алгоритмов решения практических задач;
- 2) знание постановки классических задач;
- 3) знание методов формулировки и доказательства математических утверждений;
- 4) умение применять методы дискретной математики для решения задач в профессиональной деятельности;
- 5) умение применять аппарат дискретной математики для доказательства утверждений и теорем;
- 6) владение навыками квалифицированного выбора и адаптации существующих методов дискретной математики для решения практических задач;
- 7) владение навыками использования методов решения классических задач дискретной математики для решения различных естественнонаучных задач.

Критерии оценивания компетенций	Уровень сформированности компетенций	Шкала оценок
Обучающийся в полной мере владеет понятийным аппаратом и теоретическими основами дисциплины, способен иллюстрировать ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения практических задач данной дисциплины.	Повышенный уровень	Отлично
Обучающийся в полной мере владеет понятийным аппаратом и теоретическими основами дисциплины, способен иллюстрировать ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения практических задач данной дисциплины. Допускает ошибки при решении этих задач.	Базовый уровень	Хорошо
Обучающийся частично владеет понятийным аппаратом и теоретическими основами дисциплины, способен иллюстрировать ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения практических задач данной дисциплины. Допускает ошибки при решении этих задач.	Пороговый уровень	Удовлетворите льно
Ответ на контрольно-измерительный материал не соответствует любым трем(четырем) из перечисленных показателей. Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые ошибки.	_	Неудовлетвори тельно

ЛИСТ СОГЛАСОВАНИЙ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дисциплина: <u>Б1.О.09 Дискретная математика.</u> Направление/специальность: 09.03.01 Информатика и вычислительная техника. Профиль подготовки: Программно-аппаратные средства информационных систем. Форма обучения: очная Учебный год: 2024/2025 Ответственный исполнитель Заведующий кафедрой математической переселков С.А. <u>28.06.2024</u> физики и информационных технологий Исполнители Доцент кафедры математической физики и информационных технологий Минин Л.А. 28.06.2024 СОГЛАСОВАНО Куратор ООП ВО по НП/С 28.06.2024 подпись расшифровка подписи Зав. отделом обслуживания ЗНБ 28.06.2024 расшифровка подписи подпись

Программа рекомендована <u>Научно-методическим советом физического факультета,</u> протокол № 6 от 27.06.2024г.