МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВПО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой радиофизики наименование кафедры, отвечающей за реализацию дисциплины (Корчагин Ю.Э.) подпись, расшифровка подписи 31.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.ДВ.04.01 Имитационное моделирование телекоммуникационных систем

Код и наименование дисциплины в соответствии с Учебным планом

- 1. Шифр и наименование направления подготовки: 03.04.03 Радиофизика
- **2. Профиль подготовки:** Компьютерные методы обработки радиофизической информации
- 3. Квалификация (степень) выпускника: магистр
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины: кафедра радиофизики
- 6. Составители программы: <u>Зюльков Александр Владимирович, к.ф.м.н., до</u>цент
- 7. Рекомендована: <u>методическим советом физического факультета прот. №5</u> от 31.08.2024
- 8. Учебный год: 2025/2026 Семестр(ы): <u>3</u>
- 9. Цели и задачи учебной дисциплины

Освоение методологии имитационного моделирования, ее вероятностного и статистического аспектов. Изучение возможностей графической среды многоподходного имитационного моделирования "Anylogic". Освоение способов построения объектно-ориентированных имитационных моделей простейших телекоммуникационных систем и их компонентов.

10. Место учебной дисциплины в структуре ООП: дисциплина по выбору вариативной части блока Б1 учебного плана

Дисциплина опирается на курсы: «Информатика», «Теория вероятностей и математическая статистика», «Радиотехнические цепи и сигналы», «Статистиче-

ская радиофизика», «Беспроводные системы связи», «Основы статистической теории связи».

Необходимые знания и умения:

Студенты должны знать:

- основы теории вероятностей и математической статистики,
- теоретические основы радиотехники,
- основы теории радиоприемных устройств;
- основы теории телетрафика и основные коммуникационные протоколы систем связи.

Студенты должны уметь:

- применять знания, полученные при освоении базовых дисциплин, к новым дисциплинам и областям знания;
- владеть компьютером и современным программным обеспечением на уровне опытного пользователя;
- приобретать новые знания, используя современные образовательные и информационные технологии, в том числе Интернет.

Студенты должны владеть:

- навыками работы с операционной системой компьютера;
- базовыми навыками работы с прикладным программным обеспечением;
- способностью к овладению базовыми знаниями в области математики и естественных наук, их использованию в профессиональной деятельности;
- способностью самостоятельно приобретать новые знания, используя современные образовательные и информационные технологии;
- способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности;
- способностью понимать принципы работы и методы эксплуатации современной радиоэлектронной и оптической аппаратуры и оборудования.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название ком- петенции	Код(ы)	Индика- тор(ы)	Планируемые результаты обучения
ПК-1	Владеть способностью использовать в своей научно- исследовательской деятельности знание современных проблем и новейших достижений физики и радиофизики	ПК-1.1	Владеет фунда- менталь- ными зна- ниями в области систем связи и телеком- муникаций	Знать: Принципы функционирования современных радиофизических систем обработки и передачи информации Уметь: Разрабатывать, реализовывать и использовать имитационные модели различных современных радиофизических систем обработки и передачи информации Владеть: (иметь навык(и)): Новейшими достижениями в области разработки, построения и верификации имитационных моделей современных радиофизических систем обработки и передачи информации.
ПК-1	Владеть способ-	ПК-1.3	Проводит анализ	Знать : Принципы функционирования современных и перспективных радиофизических систем обработки ин-

зовать в своей научно-	известных техниче-	формации, принципы функционирования современных компьютерных сетей передачи информации и возможно-
исследователь- ской деятельно- сти знание со- временных про- блем и новейших достижений фи- зики и радиофи- зики	ских ре- шений отдельных блоков систем связи, телеком- муникаций и радио- навигации	сти современных пакетов их имитационного моделирования Уметь: Разрабатывать, реализовывать и использовать имитационные модели различных современных систем обработки и передачи информации. Владеть (иметь навык(и)): Новейшими достижениями в области разработки, построения и верификации имитационных моделей современных радиофизических систем обработки и передачи информации.

12 Объем дисциплины в зачетных единицах/час $-\frac{2}{72}$

Форма промежуточной аттестации зачет

13 Виды учебной работы:

Вид учебной работы		Трудоемкость (часы)		
		1	По семестрам	
	·	Всего	3	
Ауді	иторные занятия	38	38	
в том числе:	лекции	26	26	
	практические	12	12	
	лабораторные			
Самосто	ятельная работа	34	34	
Подгот.				
Итого:		72	72	
	·	зачет	зачет	

13.1. Содержание разделов дисциплины:

п/п			Реализация		
			раздела		
	Наименование		дисциплины		
	раздела дисци-	Содержание раздела дисциплины	с помощью		
	плины		онлайн-		
			курса,		
			ЭУМК*		
	1. Лекции				
1.1	Виды имитаци- онных моделей	Цели и задачи курса. Предмет курса. Место моделирования среди различных методов научного познания. Детерминированные, стохастические и хаотические модели. Их ограничения и области применения. Примеры. Постановка задачи имитационного моделирования. Имитационные модели — статические, динамические, непрерывные, дискретные, гибридные. Пример имитационной модели. Досто-	-		

		-	1
		инства и недостатки имитационного моделирова- ния. Имитационные модели и нейросети, цифровые двойники, «облачные» модели.	
1.2	Методы имита- ционного моде- лирования.	Методологические подходы в имитационном моделировании. Дискретные, непрерывные и комбинированные имитационные модели. Объектная, динамическая и функциональная модели системы. Системная динамика. Динамические системы. Агенты. Способы построения описанных моделей системы. Сравнение различных методологий.	-
1.3	Имитационное моделирование в «Anylogic». Ос- новные понятия.	Графическая среда многоподходного объектно- ориентированного имитационного моделирования "Anylogic". Основные возможности, интерфейс, структура и организация пакета. Основные приемы работы в "Anylogic". Основы Java для Anylogic. Раз- работка имитационных моделей непрерывных, дис- кретных и дискретно-непрерывных систем с ис- пользованием различных подходов.	-
1.4	Методологиче- ские вопросы разработки и ис- пользования мо- делей. Вероят- ностный и стати- стический аспек- ты	Реализация оригинальных датчиков случайных величин в Anylogic и их проверка. Методы проверки достоверности модели. Вероятностное описание и методы генерирования случайных величин, процессов и потоков. Моделирование систем массового обслуживания. Компьютерный эксперимент. Статистическая обработка результатов. Использование специализированных пакетов статистической обработки.	-
1.5	Стохастическое моделирование систем	Эталонная модель взаимодействия открытых систем. Некоторые телекоммуникационный протоколы. Модели простейших телекоммуникационных систем и их компонентов. Моделирование радиотехнической подсистемы и подсистемы (сети) массового обслуживания систем передачи информации	-
	2. Г	Ірактические занятия	
2.1	Виды имитаци- онных моделей	Ознакомление с возможностями, интерфейсом, редакторами и движком пакета «Anylogic». Изучение примеров различных моделей.	-
2.2	Имитационное моделирование в «Anylogic». Основные понятия.	Основные приемы работы в "Anylogic". Разработка имитационных моделей непрерывных, дискретных и дискретно-непрерывных систем с использованием различных подходов.	-
2.3	Методы имита- ционного моде- лирования	Разработка, отладка и экспериментирование с простейшими моделями систем массового обслуживания. Разработка, отладка и экспериментирование с простейшими моделями оптимальных и квазиоптимальных фильтров для приема сигналов на фоне	-

		шумов.	
2.4	Методологиче- ские вопросы разработки и ис- пользования мо- делей. Вероят- ностный и стати- стический аспек- ты	Проверка достоверности модели. Осуществление компьютерных экспериментов различных типов. Статистическая обработка результатов эксперимента.	-
2.5	Стохастическое моделирование систем	Разработка и верификация дискретно- событийной модели в соответствии с инди- видуальным заданием. Разработка и вери- фикация модели приемника сигнала на фоне шума в соответствии с индивидуаль- ным заданием. Компьютерные эксперимен- ты.	-

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование раз-		Ви	іды занятий (ча	сов)	
п/ п	дела дисциплины	Лек- ции	Практиче- ские	Лаборатор- ные	Самостоятельная работа	Все-
1	Виды имитационных моделей	6			4	10
2	Методы имитацион- ного моделирования	6		4	4	14
3	Имитационное мо- делирование в «Anylogic»	4		4	16	24
4	Методологические вопросы использо- вания моделей	6			2	8
5	Стохастическое мо- делирование систем	4		4	8	16
	Итого:	26		12	34	72

14. Методические указания для обучающихся по освоению дисциплины

Для обучающихся, кроме прослушивания лекционного курса, желательно изучение методических материалов, составленных специально для углубленного понимания этого курса, а также участие в промежуточных коллоквиумах и контрольных работах.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

- а) основная литература:
- 1. Шеннон Р. Имитационное моделирование искусство и наука. / Р. Шеннон М.: Мир, 2078. 302с.
- 2. Лоу А.М. Имитационное моделирование / А.М. Лоу, В.Д. Кельтон Питер, 2004. 846с.
- 3. Рыжиков Ю.И. Имитационное моделирование.Теория и технологии /Ю.И. Рыжиков- С.- Петербург. :БХВ-Петербург, 2004. 530с.
- 4. Карпов Ю.Г. Имитационное моделирование систем./ Ю.Г. Карпов С.-Петербург. :БХВ-Петербург, 2005. 390с.
- 5. Соколов А.Н. Однолинейные системы массового обслуживания: учебное пособие / А. Н. Соколов, Н. А. Соколов. СПб.: Изд-во «Теледом» ГОУВПО СПбГУТ, 2010. 112 с.
- 6. Шелухин, О. И. Моделирование информационных систем / О. И. Шелухин, А. М. Тенякшев, А. В. Осин. М.: Радиотехника, 2005.
- 7. Даденков, С.А. Имитационное моделирование дискретных информационных систем и сетей в среде AnyLogic: учеб. пособие / С.А. Даденков, Е.Л. Кон. Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2018. 315 с.
- 8. Зюльков А.В. Имитационное моделирование. Вероятностные и статистические аспекты. / А.В. Зюльков, Ю.С. Радченко, А.В. Захаров ; Воронеж. гос. ун-т— Воронеж : Издательский дом ВГУ, 2017 .— Загл. с титула экрана .— Свободный доступ из интрасети ВГУ .— Текстовый файл .— <URL: http://www.lib.vsu.ru/elib/texts/method/vsu/m17-216.pdf>.
- 9. Зюльков, А.В. Цифровое моделирование случайных величин [Электронный ресурс] : учебно-методическое пособие для вузов : [для студ. 3 и 5 курсов д/о, 5 курса в/о и магистров для специальности 010801 Радиофизика и электроника и направления 010800 Радиофизика] / А.В. Зюльков ; Воронеж. гос. ун-т. Электрон. текстовые дан. Воронеж : Издательско-полиграфический центр Воронежского государственного университета, 2011 .— Загл. с титул. экрана .— Свободный доступ из интрасети ВГУ .— Текстовый файл .— Windows 2000; Adobe Acrobat Reader .— <URL:http://www.lib.vsu.ru/elib/texts/method/vsu/m11-194.pdf>.

б) дополнительная литература:

- 1. Самарский А.А. Математическое моделирование./ А.А.Самарский, А.П. Михайлов М.: Наука, Физматлит, 2097. 320с.
- 2. Шварц М. Сети связи: протоколы, моделирование и анализ. В 2 ч./ М. Шварц Пер.с англ. В.И. Неймана. Ч.2.-2092.-272с.
- 3. Советов Б.Я. Моделирование систем. Практикум. / Б.Я. Советов, С.А. Яковлев– М.: Высш. шк., 2099. 224с.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
	Электронная библиотека Зональной научной библиотеки Воронежского госуни-
1.	верситета : электронно-библиотечная система. – URL :
	https://lib.vsu.ru/zgate?Init+elib.xml,simple_elib.xsl+rus
2	Электронно-библиотечная система "БиблиоТех" : электронно-библиотечная си-
2.	стема. – URL : https://lib.vsu.ru/?p=4&t=2d&id=1486
3.	Электронно-библиотечная система «ЮРАЙТ» : электронно-библиотечная систе-
	ма. – URL : https://lib.vsu.ru/?p=4&t=2d&id=1457

4.	Электронно-библиотечная система ВООК.ru.(изд-во "КноРус") : электронно-
	библиотечная система. – URL : https://lib.vsu.ru/?p=4&t=2d&id=1436
5.	Национальный цифровой ресурс "РУКОНТ" : электронно-библиотечная система. –
5.	URL: https://lib.vsu.ru/?p=4&t=2d&id=1401
6	Электронно-библиотечная система "ZNANIUM.COM" (изд-во "ИНФРА-М") : элек-
6.	тронно-библиотечная система. – URL : https://lib.vsu.ru/?p=4&t=2d&id=1360
7	Электронно-библиотечная система ibook.ru : электронно-библиотечная система. –
7.	URL: https://lib.vsu.ru/?p=4&t=2d&id=1344
	Электронно-библиотечная система IPRbooks : электронно-библиотечная система.
8.	– URL : https://lib.vsu.ru/?p=4&t=2d&id=1343
	Электронно-библиотечная система «КнигаФонд» : электронно-библиотечная си-
9.	стема. – URL : https://lib.vsu.ru/?p=4&t=2d&id=1336
10	Электронно-библиотечная система IQLib : электронно-библиотечная система. –
10.	URL: https://lib.vsu.ru/?p=4&t=2d&id=1310
4.4	Электронно-библиотечная система "Издательство "Лань" : электронно-
11.	библиотечная система. – URL : https://lib.vsu.ru/?p=4&t=2d&id=1308
10	Электронно-библиотечная система "Университетская библиотека online" : элек-
12.	тронно-библиотечная система. – URL : https://lib.vsu.ru/?p=4&t=2d&id=1307
10	Электронно-библиотечная система "Консультант студента" : электронно-
13.	библиотечная система. – URL : https://lib.vsu.ru/?p=4&t=2d&id=1306
- 44	Национальное общество имитационного моделирования. – URL :
14.	http://simulation.su/static/ru-soft.html

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1	Зюльков А.В. Имитационное моделирование. Вероятностные и статистические аспекты. / А.В. Зюльков, Ю.С. Радченко, А.В. Захаров; Воронеж. гос. ун-т— Воронеж: Издательский дом ВГУ, 2017.— Загл. с титула экрана.— Свободный доступ из интрасети ВГУ .— Текстовый файл .— <url:http: elib="" m17-216.pdf="" method="" texts="" vsu="" www.lib.vsu.ru="">.</url:http:>
2	Зюльков, А.В. Цифровое моделирование случайных величин [Электронный ресурс]: учебно-методическое пособие для вузов: [для студ. 3 и 5 курсов д/о, 5 курса в/о и магистров для специальности 010801 - Радиофизика и электроника и направления 010800 - Радиофизика] / А.В. Зюльков; Воронеж. гос. ун-т. — Электрон. текстовые дан. — Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2011. — Загл. с титул. экрана. — Свободный доступ из интрасети ВГУ. — Текстовый файл. — Windows 2000; Adobe Acrobat Reader. — <url: <a="" href="http://www.lib.vsu.ru/elib/texts/method/vsu/m11-194.pdf">http://www.lib.vsu.ru/elib/texts/method/vsu/m11-194.pdf>.</url:>
3	Даденков, С.А. Имитационное моделирование дискретных информационных систем и сетей в среде AnyLogic: учеб. пособие / С.А. Даденков, Е.Л. Кон. — Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2018. — 315 с.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационносправочные системы (при необходимости)

18. Материально-техническое обеспечение дисциплины:

Ноутбук HP Pavilion Dv9000, проектор BenQ MP575

- 1. Учебная лаборатория кафедры.
- 2. Персональные компьютеры 15 шт.
- 3. Программа «Anylogic»

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раз- дела дисциплины (модуля)	Компе- тенция(и)	Индикатор(ы) достижения компетенции	Оценочные сред- ства
1	Виды имитационных моделей	ПК-1	ПК-1.1, ПК-1.3	Вопросы 1-4
2	Имитационное мо- делирование в «Anylogic». Основ- ные понятия.			Вопросы 13-16
3	Методы имитацион- ного моделирования			Вопросы 9-10
4	Методологические вопросы разработки и использования моделей. Вероятностный и статистический аспекты	ПК-1	ПК-1.3	Вопросы 5-8, 11, 12, 17
5	Стохастическое мо- делирование систем	ПК-1	ПК-1.1, ПК-1.3	Вопросы 15-18

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью результатов выполнения тестов в ЭО системе Moodle.

Описание технологии проведения: 3 теста содержат 29 контрольных вопросов. Вопросы и задачи имеют разный вес.

Требования к выполнению заданий - более 60% баллов

20.2. Промежуточная аттестация

Контроль успеваемости по дисциплине осуществляется с помощью предоставленных отчетов о выполнении индивидуальных заданий и разработанных программ на ЭВМ

20.2.1 Перечень вопросов к зачету

№ п/п	Текст вопроса
01	Что такое моделирование. Виды моделей.
02	Понятие случайности. Детерминированные, стохастические и хаотические модели. Примеры.
03	Вероятностное пространство. Свойства его элементов. Примеры.
04	Цифровое моделирование. Постановка задачи. Преимущества и недостатки.
05	Свойства равномерно-распределенных случайных величин. Лемма.
06	Датчики случайных чисел. Длина периода последовательности квазислучайных величин. Моделирование случайных событий.
07	Производящая функция дискретных случайных величин. Дискретные распределения и их свойства.
08	Моделирование биномиальной и пуассоновской случайных величин.
09	Метод скользящего суммирования и рекуррентный метод моделирования реализаций стационарного гауссовского случайного процесса. Оценка точности формирования реализации случайного процесса.
10	Методы описания случайных потоков. Моделирование пуассоновского случайного потока и потока Эрланга.
11	Основные этапы имитационного моделирования.
12	Особенности обработки данных имитационного моделирования.
13	Пакет имитационного моделирования Anylogic. Организация, библиотеки. Основные возможности для построения моделей, проведения экспериментов, анимации и т.д.
14	Дискретно-событийное моделирование. Модели систем массового обслуживания.
15	Подход системной динамики моделирования систем. Моделирование динамических систем.
16	Агентные модели систем. Агенты в Anylogic – структура, поведение, интерфейс,

		взаимодействие.
•	17	Использование различных парадигм при разработке моделей. Примеры.

20.2.2 Перечень практических заданий и заданий для курсовых работ

20.2.2.1 Задания по моделированию систем с дискретным поведением

- 1) Промоделировать заданную СМО в стационарном режиме (возможно с использованием шаблона bank4.alp, переделав его).
- 2) Провести вычислительный эксперимент, обеспечив стационарный режим работы и заданную точность изучаемых характеристик.
- 3) Используя результаты теории массового обслуживания [2-4,7 и др.], рассчитать теоретические характеристики работы системы в стационарном состоянии и сравнить с результатами имитационного моделирования. Оценить причины и величину ошибок эксперимента.
- 4) На основе результатов моделирования проверить выполнение законов сохранения (формула Литтла) в стационарном состоянии [1,2 и др.] $Q = \lambda d$, $L = \lambda w$,

где d - установившаяся средняя задержка в очереди;

w - установившееся среднее время пребывания в системе;

 $Q\,$ - установившееся среднее по времени число требований в очереди.

Например для системы M|M|1 $\rho=\lambda/\mu$ - отношение интенсивностей поступления и обслуживания требований

$$d = \lambda/(1-\rho), L = \lambda w = \lambda(d+1).$$

При
$$\rho = 0.9$$
 $d = 9$, $Q = 8.1$, $L = 9$.

При моделировании

- выбрать параметры модели так, чтобы система работала в нагруженном режиме без перегрузок;
- в распределении Эрланга k>1;
- выбрать первоначальную загрузку системы для скорейшего установления стационарного режима.

При теоретическом расчете характеристик систем с распределением времени обслуживания, отличающимся от экспоненциального, использовать соотношения для систем с произвольным (G) распределением времени обслуживания. Системы с одним устройством обслуживания подробно описаны в [7].

Для статистического анализа результатов моделирования, выведенных в консоль Anylogic можно использовать любое доступное мат. обеспечение, например, программы MAXIMA или PROGNOS (работает в DOS, так что может быть необходимо поставить D-Fend Reloader [6]).

- 5) Оформить и предоставить отчет по работе. Он должен содержать
 - титульный лист;
 - условие задачи;
 - формулы для расчета характеристик (со ссылкой на литературу) с подставленными численными значениями;
 - скриншорты имитационной модели;

- сравнение полученных теоретических и экспериментальных результатов, а также объяснения возможных причин их несоответствия;
- список литературы.

Список задач

- 1. Промоделировать СМО M|M|1. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 2. Промоделировать СМО M|M|1|0. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 3. Промоделировать СМО M|M|2. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 4. Промоделировать СМО M|M|1|1. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 5. Промоделировать СМО M|M|2|0. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе Сравнить результаты с теоретическими.
- 6. Промоделировать СМО M|M|oo. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 7. Промоделировать СМО $M|E_2|1$. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 8. Промоделировать СМО M|E₃|1. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 9. Промоделировать CMO M|D|1. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 10. Промоделировать СМО М| Треугольное распр.|1. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 11. Промоделировать СМО M|M|1|2. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 12. Промоделировать СМО M|M|2. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 13. Промоделировать СМО M|U|1. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.

- 14. Промоделировать СМО M|M|2. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 15. Промоделировать СМО M|M|1|1. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 16. Промоделировать СМО M|M|2|0. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе Сравнить результаты с теоретическими.
- 17. Промоделировать СМО M|M|oo. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 18. Промоделировать СМО $M|E_2|1$. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 19. Промоделировать СМО $M|E_3|1$. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 20. Промоделировать СМО M|D|1. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 21. Промоделировать СМО М|Треугольное распр.|1. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 22. Промоделировать СМО M|M|1|3. Найти вероятностные характеристики времени пребывания требования в системе и числа требований в системе. Сравнить результаты с теоретическими.
- 23. М|М|1+задача 1.10 [1]. Ответить на вопросы задания.
- 24. М|М|1+задача 1.11 [1]. Ответить на вопросы задания.
- 25. Задача 1.14+задача 1.15 [1]. Ответить на вопросы задания.
- 26. Задача 1.14+задача 1.16 [1]. Ответить на вопросы задания.
- 27. Задача 1.14+задача 1.25 [1]. Ответить на вопросы задания.

Литература

- 1. Имитационное моделирование / А.М. Лоу, В.Д. Кельтон ;изд. Питер 2004г. Параграфы 1.4.1, 4.3, 4.4
- 2. Теория массового обслуживания / Л. Клейнрок; Пер. с англ. И.И. Грушко; Под ред. В.И. Неймана .— М.: Машиностроение, 1979 .— 431,[1] с.: ил..
- 3. Методы теории массового обслуживания / Д. Кениг, Д. Штойян ; Пер. с нем. В.Ф. Матвеева и Р.Ш. Нагапетяна; Под ред. Г.П. Климова .— М. : Радио и связь, 1981 .— 127 с. : ил..
- 4. Основы моделирования дискретных систем /Т.И. Алиев С.-П., 2009.
- 5. Цифровое моделирование случайных величин : учебное пособие / под ред. А.В. Зюлькова, Ю.С. Радченко .— Воронеж, 2006 .— 31 с. Тираж 50. 1,9 п.л..
- 6. D-Fend Reloader http://dfendreloaded.sourceforge.net/.
- 7. Однолинейные системы массового обслуживания: учебное пособие / А. Н. Соколов, Н.А. Соколов. СПб.: Изд-во «Теледом» ГОУВПО СПбГУТ, 2010. 112 с.

20.2.2.2 Задания по моделированию систем с непрерывным поведением

Сигнал заданной формы в смеси с аддитивным белым гауссовским шумом (БГШ) воздействует на заданное устройство.

- 1) Смоделировать систему. Включить в отчет распечатки изображений структуры и поведения блоков системы.
- 2) Убедиться в возможности использования устройства для обнаружения сигнала для различных отношений сигнал-шум (ОСШ на выходе устройства обработки) $z^2 = 2E/N_0 \ ,$ где E энергия сигнала, $N_0/2$ спектральная плотность мощности БГШ. Для цифрового шума считать $N_0 = 2\sigma^2 \Delta t, \ \sigma^2$ дисперсия шума, Δt интервал его дискретизации.

Включить в отчет графики несколько характерных реализаций выходного эффекта устройства при различных ОСШ (z=3,5,7,10).

3) В статистическом эксперименте найти вероятности превышения ненормированного порога H = E/2 (критерий идеального наблюдателя) для z=3,5,7,10 в момент окончания сигнала при его **наличии** и **отсутствии** на входе (т.е. вероятности правильного обнаружения и ложной тревоги).

Сравнить с результатами теоретического расчета соответствующих вероятностей.

Например для полностью известного сигнала нормированный порог $h=H/N_0=E/(2N_0)=z^2/4$. Таким образом соотношения (2.2.6), (2.2.7) из [2] примут вид

$$\alpha = 1 - \Phi(\frac{h}{z}) = 1 - \Phi(\frac{z}{2}), P_D = 1 - \Phi(\frac{h}{z} - z) = 1 - \Phi(-\frac{z}{2}) = \Phi(\frac{z}{2}),$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-t^2/2) dt$$
 - интеграл вероятности.

Ссылки на номера страниц в заданиях даны по книге [2].

Разобраться с функционированием типовых звеньев (файлы «Фильтрация» и «Описания типовых звеньев»).

Смоделировать заданную систему. Включить в отчет распечатки изображений структуры и поведения блоков системы. Номера работ в соответствии с номером фамилий в списке группы в курсе ВИМ.

Задания

Продемонстрировать возможность выделения сигнала из аддитивной смеси с белым гауссовским шумом (фильтрации)

- 1) гармонического сигнала с помощью колебательного контура;
- 2) прямоугольного видеоимпульса с помощью интегрирующего звена (апериодическое звено);
- 3) треугольного видеоимпульса с помощью интегрирующего звена (апериодическое звено);
- 4) трапециидального видеоимпульса с помощью интегрирующего звена (апериодическое звено).

Воспользоваться элементами проекта «Фильтрация».

Продемонстрировать возможность обнаружения сигнала заданной формы в смеси с аддитивным белым гауссовским шумом (БГШ), воздействующего на заданное устройство. Выполнить аналогично проекту VideoImp, где реализованы коррелятор и согласованный фильтр для прямоугольного видеоимпульса.

- 5) Сигнал прямоугольный видеоимпульс. Устройство коррелятор. Воспользоваться библиотечным устройством «интегратор». Модифицировать его. Литература [2]— с.25.
- 6) Сигнал прямоугольный видеоимпульс. Устройство согласованный фильтр. Литература[2] с.49.
 - 7) Сигнал прямоугольный видеоимпульс. Устройство согласованный фильтр, где вместо идеального интегратора стоит интегрирующий RC фильтр (есть библиотечный элемент).

Литература[2] – с.49.

- 8) Сигнал треугольный видеоимпульс. Устройство коррелятор. Воспользоваться библиотечным устройством «интегратор». Модифицировать его. Литература [2]— с.25.
- 9) Сигнал треугольный видеоимпульс. Устройство согласованный фильтр. Литература [3] с.63.
 - 10) Сигнал треугольный видеоимпульс. Устройство согласованный фильтр, где вместо идеального интегратора стоит интегрирующий RC фильтр (есть библиотечный элемент).

Литература [3]— с.63.

- 11) Сигнал трапецеидальный видеоимпульс. Устройство коррелятор. Воспользоваться библиотечным устройством «интегратор». Модифицировать его. Литература [3]— с.63.
 - 12) Сигнал трапецеидальный видеоимпульс. Устройство согласованный фильтр. Литература [3] с.63.
 - 13) Сигнал трапецеидальный видеоимпульс. Устройство согласованный фильтр, где вместо идеального интегратора стоит интегрирующий RC фильтр (есть библиотечный элемент).

Литература [3]— с.63.

14) Сигнал – последовательность двух прямоугольных видеоимпульсов. Устройство – согласованный фильтр.

Литература [2]— с.50.

15) Сигнал – прямоугольный радиоимпульс. Устройство – согласованный фильтр. Есть библиотечный элемент колебательный контур.

Литература [2]— с.50.

- 16) Сигнал прямоугольный видеоимпульс. Устройство коррелятор. Воспользоваться библиотечным устройством «интегратор». Модифицировать его. Литература [2]— с.25.
- 17) Сигнал прямоугольный видеоимпульс. Устройство согласованный фильтр. Литература[2] с.49.
 - 18) Сигнал прямоугольный видеоимпульс. Устройство согласованный фильтр, где вместо идеального интегратора стоит интегрирующий RC фильтр (есть библиотечный элемент).

Литература[2]- с.49.

- 19) Сигнал треугольный видеоимпульс. Устройство коррелятор. Воспользоваться библиотечным устройством «интегратор». Модифицировать его. Литература [2]— с.25.
- 20) Сигнал треугольный видеоимпульс. Устройство согласованный фильтр. Литература [3]– с.63.

21) Сигнал – треугольный видеоимпульс. Устройство – согласованный фильтр, где вместо идеального интегратора стоит интегрирующий RC – фильтр (есть библиотечный элемент).

Литература [3]— с.63.

- 22) Сигнал трапецеидальный видеоимпульс. Устройство коррелятор. Воспользоваться библиотечным устройством «интегратор». Модифицировать его. Литература [3]— с.63.
 - 23) Сигнал трапецеидальный видеоимпульс. Устройство согласованный фильтр. Литература [3] с.63.
 - 24) Сигнал трапецеидальный видеоимпульс. Устройство согласованный фильтр, где вместо идеального интегратора стоит интегрирующий RC фильтр (есть библиотечный элемент).

Литература [3]— с.63.

Список литературы

- 1) Баскаков С. И. Радиотехнические цепи и сигналы: учебник для студ. вузов, обуч. по специальности "Радиотехника" / С.И. Баскаков. Изд. 5-е, стер., ил. М.: Высшая школа, 2005. 462 с.: ил. Библиогр.: с.457-458.
- 2) Тихонов, В.И. Оптимальный прием сигналов / В.И. Тихонов .— М. : Радио и связь, 1983 .— 319 с.
- 3) Лебедько Е.Г. Математические основы передачи информации / Е.Г. Лебедько.— СПб: СПбГУИТМО, 2009.- 120 с.

Контроль успеваемости по дисциплине осуществляется с помощью предоставленных отчетов о выполнении заданий и разработанных программ на ЭВМ.

Описание технологии проведения: опрос по предоставленным отчетам и программам на ЭВМ.

Требования к выполнению, шкалы и критерии оценивания

Требования к выполнению заданий - умение работать с предоставленными программами и пояснения содержания предоставленных отчетов.

Для оценивания результатов обучения используются следующие показатели

- 1) знание учебного материала и владение понятийным аппаратом;
- 2) умение применять теоретические знания при решении практических задач.
- 3) умение иллюстрировать ответ примерами, фактами, данными исследований.

Для оценивания результатов обучения используется 2-х балльная шкала: «зачтено», «не зачтено».

Критерии оценивания компетенций	Уровень сформиро- ванности компетен- ций	Шкала оценок
Полный ответ на два произвольно выбранных вопро-	Базовый	Зачтено

са из комплекта вопросов или незначительные погреш-	VNOBALL	
·	уровень	
ности в ответе, не указывающие на отсутствие общего		
понимания существа предмета.		
Обучающийся владеет понятийным аппаратом в		
данной области науки, теоретическими основами дисци-		
плины, способен к решению типовых задач, дает пра-		
вильные ответы на дополнительные вопросы, однако		
возможно допускает ошибки при отклонении вопроса от		
стандартного.		
Отсутствие ответа (или ответ со значительными по-		
грешностями) на один или оба произвольно выбранных		
вопроса из комплекта вопросов.		
	_	Не зачтено
Обучающийся демонстрирует отрывочные, фрагмен-		
тарные знания или отсутствие знаний по теме предмета,		
допускает грубые ошибки при ответах на простые во-		
просы, не умеет решать даже типовые задачи.		
прооб, по умест решать даже типовые задачи.		

ЛИСТ СОГЛАСОВАНИЙ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Направление/специальность 03.04.03 Радиофизика

шифр и наименование специальности

Дисциплина <u>Б1.В.ДВ.04.01 Имитационное моделирование телекоммуникаци</u>онных систем

код и наименование дисциплины

Профиль подготовки Компьютерные методы обработки радиофизической информации

в соответствии с Учебным планом

Форма обучения <u>Очная</u>
Учебный год <u>2025/2026</u>

Ответственный исполнитель

Зав кафедрой радиофизики

должность, подразделение

в кафодроп радпофлогии

(Ю.Э. Корчагин)

31.08. 2024 г.

подпись

расшифровка подписи

Исполнители

Доц. каф. радиофизики

(А.В. Зюльков)

31.08. 2024г.

должность, подразделение

подпись

расшифровка подписи

СОГЛАСОВАНО

Куратор ООП по направлению/специальности

Sh

(Ю.Э. Корчагин) 31.08. 2024г.

подпись

расшифровка подписи

Начальник отдела обслуживания ЗНБ

Жей (Н.В. Белодедова)

31.08. 2024г.

подпись

расшифровка подписи

Программа рекомендована НМС физического факультета

(наименование факультета, структурного подразделения)

протокол № 5 от 27.06.2024 г.