Минобрнауки россии

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

VITE	 WIZE	AIA
VIL	 <i>,</i> ж і і	ΑЮ

Заведующий кафедро
экспериментальной физики
аименование кафедры, отвечающей за реализацию дисциплины
подпись, расшифровка подпис
31.08.2021

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.Б.24 Физика

Код и наименование дисциплины в соответствии с учебным планом

1. Код и наименование направления подготовки/специальности:

10.05.04 Информационно-аналитические системы безопасности

2. Профиль подготовки/специализация:

Информационная безопасность финансовых и экономических структур

- 3. Квалификация выпускника: специалист
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

кафедра экспериментальной физики

- 6. Составители программы: Глухов И. Л., кандидат физико-математических наук
- 7. Рекомендована:

Кафедрой экспериментальной физики 31.08.2021 г., протокол №1

(наименование рекомендующей структуры, дата, номер протокола)

8. Учебный год: 2021/2022

Семестр: 4

9. Цели и задачи учебной дисциплины:

Целями освоения учебной дисциплины являются:

- формирование научной картины материального мира
- закрепление и углубление знаний, навыков и умений, сформированных при изучении математических дисциплин

Задачи учебной дисциплины:

- изучение базовых теорий основных разделов физики
- выработка навыков применения физических законов к конкретным задачам

10. Место учебной дисциплины в структуре ООП:

Б1.Б.24 Физика является обязательной дисциплиной базовой части естественно-научного цикла в блоке общенаучной подготовки. Предшествующими данной дисциплине являются «Алгебра», «Геометрия», «Математический анализ», «Дифференциальные уравнения». Знания и умения, приобретенные студентами в результате изучения дисциплины, будут использоваться при изучении курсов: «Военный блок», «Безопасность жизнедеятельности», «Техническая защита информации», «Радиоизмерения».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Планируемые результаты обучения
ОК-8	способность к самоорганизации и самообразованию	Знать: основные физические теории и области их применения Владеть: терминами и понятиями основных разделов физики
ОПК-1	способность анализировать физические явления и процессы, а также применять	Знать: основные физические законы и границы их применимости
	соответствующий математический аппарат при решении задач в сфере профессиональной	Уметь: строить качественные и количественные модели, описывающие конкретные физические явления
	деятельности	Владеть: приемами решения разнообразных физических задач

12. Объем дисциплины в зачетных единицах/час.(в соответствии с учебным планом) — _4_/__144___.

Форма промежуточной аттестации: зачет с оценкой

13. Трудоемкость по видам учебной работы

Виды учебной работы		Трудоемкость	
		Всего	По семестрам
			4-ый семестр
В том числе:	лекции	34	34
	практические	34	34
	лабораторные	-	-
Самостоятельная работа		76	76

В том числе: курсовая работа (проект)	-	-
Форма промежуточной аттестации (зачет с оценкой)		
Итого	144	144

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины				
	1. Лекции					
1.1	Механика	Законы кинематики и динамики поступательного и вращательного движений. Силы инерции. Законы сохранения импульса, энергии, момента импульса. Механические колебания: собственные, затухающие, вынужденные. Механические волны.				
1.2	Тепловые явления	Понятие о тепловом равновесии и температуре. Равнораспределение энергии по степеням свободы. Распределения Максвелла и Больцмана. Основное уравнение молекулярнокинетической теории. Уравнение Менделеева-Клапейрона. Внутренняя энергия, теплота, первое начало термодинамики, теплоемкости. Адиабатический процесс. Тепловые машины, цикл Карно, второе начало термодинамики.				
1.3	Электромагнетизм	Электростатическое поле, напряженность электрического поля, теорема Гаусса, работа поля и потенциал. Проводники и диэлектрики в электростатическом поле, конденсаторы. Постоянный электрический ток, законы Ома, Джоуля-Ленца. Магнитное поле и его свойства. Силы Ампера и Лоренца. Ферромагнетики и гистерезис. Электромагнитная индукция. Самоиндукция, индуктивность. Переменный электрический ток. Система уравнений Максвелла. Электромагнитные волны.				
1.4	Оптика и строение атома	Поляризация, интерференция и дифракция света. Дисперсия света, волновой пакет. Фотоэффект, уравнение Эйнштейна. Модель атома Резерфорда-Бора, рентгеновское излучение.				
1.5	Атомное ядро	Размеры и состав атомных ядер. Ядерные силы. Энергия связи ядер, дефект масс. Закон радиоактивного распада, виды распадов. Ядерные реакции, энергетический эффект. Цепная ядерная реакция, виды реакторов.				
1.6	Основы квантовой теории	Корпускулярно-волновой дуализм. Волновые функции и операторы величин. Соотношения неопределенности. Уравнение Шредингера. Понятие о зонной теории проводников (металлов), полупроводников и диэлектриков. Простейшие полупроводниковые приборы.				
	2. Практические занятия					
	по разделам 1.1-1.5	решение задач, контрольные работы				

13.2. Темы (разделы) дисциплины и виды занятий

№ п/п		Виды занятий (количество часов)				
	(раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
1	Механика	8	8	-	12	28

2	Тепловые явления	6	6	-	12	24
3	Электромагнетизм	8	10	-	14	32
4	Оптика и строение атома	6	6	-	14	26
5	Атомное ядро	4	4	-	16	24
6	Основы квантовой теории	2	0	-	8	10
Итого:		34	34	-	76	144

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение курсовой работы, практических заданий, тестов, заданий текущей аттестации и т. д.)

Студенты посещают лекции, где излагаются основные положения теоретической части курса, обозначаются направления самостоятельной работы. На практических занятиях проводится разбор типовых и усложненных задач, что углубляет и закрепляет теоретические знания, формирует навык их конкретного применения. Самостоятельная работа проводится по темам, дополняющим лекционный курс, путем изучения основной и дополнительной литературы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины:

а) основная литература

<i>u)</i> 00110	повнал литература					
№ п/п	Источник					
1	Трофимова Т.И. Курс физики: [учебное пособие для инженертехн. специальностей вузов] / Т.И. Трофимова — 21-е изд., стер. — Москва: Издательский центр "Академия", 2015. — 557 с.					
2	Волькенштейн, В.С. Сборник задач по общему курсу физики: учебное пособие для студ. втузов / В.С. Волькенштейн ; под ред. И.В. Савельева. – 12-е изд., исправл. – М.: Наука, 1990. – 396 с.					

б) дополнительная литература

<u></u>	ополнитольная литоратура				
№ п/п	Источник				
3	Иродов, И.Е. Механика: основные законы: [учебное пособие для студ. вузов] / И.Е. Иродов. – Изд.7-е, стер. – М.: Бином. Лаборатория знаний, 2005. – 309 с.				
4	Иродов, И.Е. Электромагнетизм. Основные законы: [учебное пособие для студентов физических специальностей вузов] / И. Е. Иродов. – 7-е изд. – М.: БИНОМ.Лаборатория знаний, 2012. – 319 с.				
5	Иродов И.Е. Физика макросистем. Основные законы : [учебное пособие для вузов] / И.Е. Иродов. — 3-е изд., стер. — М.: БИНОМ. Лаборатория знаний, 2006. — 207 с.				

в) информационные электронно-образовательные ресурсы

№ п/п Источник

1 www.lib.vsu.ru – зональная библиотека Воронежского государственного университета

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Волькенштейн, В.С. Сборник задач по общему курсу физики: учебное пособие для студ. втузов / В.С. Волькенштейн ; под ред. И.В. Савельева. – 12-е изд., исправл. – М.: Наука, 1990. – 396 с.
2	Глухов, И.Л. Типовые задачи по общей физике: учебно-методическое пособие / И.Л. Глухов — Воронеж , $2020-66$ с.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

нет

18. Материально-техническое обеспечение дисциплины:

широкая доска с мелом или маркерами

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

pesynbiatob (оу чения		
Код и содержание компетенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции	ФОС
,	Знать: основные физические законы и теории, области их применения уметь: качественно и количественно описывать важнейшие физические явления и технические процессы, применять физические законы при организации профессиональной деятельности владеть: основными физическими терминами, навыками расчетов физических величин и представления физически	Весь курс дисциплины	Перечень вопросов к зачету
деятельности	значимой информации		

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

обутотилу при проможуто той аттоотации		
Критерии оценивания компетенций	Уровень сформированности компетенций	Шкала оценок
Сформированы полностью знания, умения и навыки	Повышенный уровень	Отлично
Сформированы знания, умения и навыки, но содержащие отдельные несущественные пробелы		Хорошо
Сформированы неполные знания, умения	Пороговый уровень	Удовлетворительно

и навыки		
Сформированы фрагментарные знания, умения и навыки или знания, умения и навыки отсутствуют	-	Неудовлетворительно

- 19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы
- 19.3.1 Перечень вопросов к экзамену (зачету):
- 1. Скорость, тангенциальное и нормальное ускорения. Равномерное и равноускоренное движения.
- 2. Кинематика вращательного движения. Связь линейных и угловых величин.
- 3. Законы динамики поступательного движения. Импульс, кинетическая и потенциальная энергии. Законы сохранения.
- 4. Динамика вращательного движения: момент инерции, момент силы, момент импульса.
- 5. Неинерциальные системы отсчета и силы инерции.
- 6. Собственные гармонические колебания пружинного и математического маятников. Затухающие колебания.
- 7. Вынужденные колебания. Резонанс.
- 8. Механические волны. Стоячая волна.
- 9. Тепловое равновесие. Температура. Распределения Максвелла и Больцмана.
- 10. Основное уравнение молекулярно-кинетической теории для идеального газа. Уравнение Менделеева-Клапейрона.
- 11. Первое начало термодинамики. Теплоемкость. Адиабатический процесс.
- 12. Тепловые машины. Цикл Карно. Второе начало термодинамики.
- 13. Напряженность электрического поля. Теорема Гаусса. Закон Кулона.
- 14. Работа электростатического поля. Потенциал. Связь напряженности и потенциала.
- 15. Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость.
- 16. Конденсаторы. Последовательное и параллельное соединение конденсаторов. Энергия электрического поля.
- 17. Электрический ток. Закон Ома для участка цепи, полной цепи. Обобщенный закон Ома. Закон Ома в дифференциальной форме.
- 18. Мощность тока. Закон Джоуля-Ленца для участка цепи и в дифференциальной форме.
- 19. Источники и свойства магнитного поля.
- 20. Сила Ампера и сила Лоренца.
- 21. Ферромагнетики, гистерезис.
- 22. Электромагнитная индукция. Закон Фарадея. Правило Ленца. Индукция в движущемся проводнике.
- 23. Самоиндукция и индуктивность.
- 24. Переменный ток. Действующие значения. Трехфазный ток. Фазное и линейное напряжения.
- 25. Система уравнений Максвелла. Ток смещения. Электромагнитные волны.
- 26. Оптический и видимый диапазоны. Поляризация света. Закон Малюса.
- 27. Интерференция света. Опыт Юнга. Просветление оптики.
- 28. Дифракция света. Минимумы и максимумы дифракционной решетки. Дисперсия и разрешающая способность.
- 29. Дифракция на трехмерных объектах. Голография.
- 30. Дисперсия света. Групповая скорость. Волновой пакет.
- 31. Законы фотоэффекта. Уравнение Эйнштейна.
- 32. Модель атома Резерфорда-Бора. Постулаты Бора. Оптические спектры и серии.
- 33. Тормозной и характеристический рентгеновские спектры. Край поглощения.

- 34. Состав и размеры атомного ядра. Свойства ядерных сил.
- 35. Энергия связи ядра, дефект масс, энергетический эффект ядерной реакции.
- 36. Виды радиоактивных распадов. Закон распада.
- 37. Цепная реакция деления. Ядерные реакторы. Термоядерный синтез.
- 38. Волновая функция. Операторы и собственные значения величин.
- 39. Оператор импульса. Соотношение неопределенности «координата-импульс». Уравнение Шредингера. Соотношение неопределенности «время-энергия».
- 40. Проводники, диэлектрики и полупроводники с точки зрения зонной теории. p-n переход. Диод, биполярный и полевой транзисторы.
- 19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний.

Критерии оценивания приведены выше.