<u>www.vsu.ru</u> ПВГУ 2.1.02 – 2017

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕГОСУДАРСТВЕННОЕБЮДЖЕТНОЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГООБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой Общей и неорганической химии

*В*СЛ 20.04.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.В.ДВ.02.02 — Фазовые равновесия в многокомпонентных системах

1. Код и наименование направления подготовки/специальности:

Направление 04.03.01 Химия

2. Профиль подготовки/специализация:

Теоретическая и экспериментальная химия

- 3. Квалификация выпускника: Бакалавр
- 4. Форма обучения: Очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

кафедра общей и неорганической химии

6. Составители программы:

Завражнов Александр Юрьевич, доктор химических наук, доцент

7. Рекомендована: НМС химического факультета ВГУ «20.03.2023», протокол №3.

8. Учебный год: 2024/2025 Семестр(ы): 4

9.Цели и задачи учебной дисциплины

Целями освоения учебной дисциплины являются:

Цель изучения дисциплины «Физико-химический анализ в неорганическом материаловедении» состоит в ознакомлении студентов с основными физико-химическими условиями реализации гомогенных и гетерогенных равновесий, задачами физико-химического анализа, фазовыми диаграммами, с настоятельной необходимостью использования фазовых диаграмм (ФД) в задачах синтеза функциональных материалов и порядком использования ФД в этих целях.

Задачи учебной дисциплины:

- изучение условий гомогенных и гетерогенных равновесий;
- формирование понимания целей и задач физико-химического анализа Рассматривается классификация основных типов фазовых диаграмм в бинарных и триарных системах. Изучаются особенности диаграмм, в которых реализуются фазы, наиболее перспективные с точки зрения современного материаловедения. Уделяется внимание вопросам синтеза таких фаз (полупроводники, неорганические полимеры и т.п.) с учетом особенностей фазовых диаграмм.

10. Место учебной дисциплины в структуре ООП:

<u>Часть, формируемая участниками образовательных отношений Б1В</u>

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ПКВ- 1	Способен проводить сбор, систематизацию и критический анализ научной, технической и патентной информации, необходимой для решения исследовательских задач химической направленности	ПКВ- 1.1 ПКВ- 1.2	Обеспечивает сбор научной, технической и патентной информации, необходимой для решения исследовательских задач Составляет аналитический обзор собранной научной, технической и патентной информации по тематике исследовательского проекта	Знать: где (библиотечные базы, базы Research Gate и т.д.) и как (программы, ключевые слова, DOI и т.д.) производится поиск информации. Уметь: отыскивать нужную информацию и литературу за короткое время. Владеть: навыками поиска и извлечения информации в среде Internet.
ПКВ- 2	Способен планировать работу и выбирать адекватные методы решения научно- исследовательских задач в области аналитической, физической, неорганической, органической и полимерной химии	ПКВ- 2.1	Составляет общий план исследования и детальные планы отдельных стадий. Выбирает экспериментальные и расчетно-теоретические методы решения поставленных задач.	Знать: основы планирования и ведения химического эксперимента. Уметь: самостоятельно разрабатывать план эксперимента с учетом его деталей. Владеть: расчетными методами решения сформулированных задач

12. Объем дисциплины в зачетных единицах/час -144/4.

Форма промежуточной аттестации (зачет/экзамен) зачет

13. Трудоемкость по видам учебной работы

			Трудоемкость			
Вид учебной работы		Всего	По семестрам			
		DCGIO	3 № семестра	4 № семестра		
Контактная рабо	ота	36		36		
	Лекции	18		18		
5 -014	практические	18		18		
в том числе:	лабораторные	-		-		
Самостоятельная работа		108		108		
В том числе: курсовая работа		-	-	-		
Промежуточная аттестация Зачет (0 часов)			Зачет	Зачет		
	Итого:	144		144		

Nº	Наименование раздела	Содержание раздела дисциплины	
п/п 1	дисциплины 2	3	
-	<u> </u>	I. Лекции	
1.1.	Введение. Гомогенное и гетерогенное равновесия.	Понятие равновесия. Равновесие и термодинамика: условия и критерии гомогенного равновесия. Константы гомогенного равновесия (<i>K_P</i> , <i>K_C</i> и <i>K_X</i>) и их связь с химическими потенциалами компонентов, парциальными давлениями и концентрациями веществ. Критерии фазового равновесия в гетерогенных системах.	
1.2.	Фазовые равновесия в однокомпонентных системах	Фазовые равновесия в однокомпонентных системах. Критические точки и точки трехфазного равновесия. Правило фаз Гиббса.	
1.3.	Особенности некоторых конкретных фазовых диаграмм однокомпонентных систем. Фазы высоких давлений.	Физические и химические свойства веществ при высоких давлениях. Высокобарические фазовые переходы. Диаграммы состояния воды, углерода, нитрида бора, кремния, галлия, церия (с критической точкой). Жидкие кристаллы.	
1.4.	Фазовые равновесия в двухкомпонентных системах. Примитивные взаимодействия.	Гетерогенные фазовые равновесия в бинарных системах. Т-х фазовые диаграммы. Т-х — диаграммы с расслоением в жидкой фазе, диаграмма эвтектического типа. Уравнение Шредера и его анализ. Криоскопическое приближение. Ретроградный ход кривых ликвидуса и солидуса. Причины возникновения ретроградности. Ограниченная и неограниченная растворимость в твердой фазе и соответствующие типы фазовых диаграмм (ф.д.). Уравнение Ван-Лаара.	

1.5.	Фазовые равновесия в двухкомпонентных системах. Сложные взаимодействия с образованием промежуточных фаз	Перитектическая диаграмма с образованием ограниченных твердых растворов. Фазовые диаграммы с образованием соединений. Дистектический, перитектический, и синтектический типы фазовых диаграмм. Уравнение Вагнера - Виланда и Бребрика. Современный взгляд на проблему дальтонидов и бертоллидов. Диаграммы с превращениями в твердой фазе. Фазовые превращения 1 и 2 рода по Эренфесту. Реконструктивные и деформационные превращения по Бюргеру.
1.6.	Фазовые равновесия в трехкомпонентных системах, а также в системах с б о льшей компонентностью.	Тернарные фазовые диаграммы и их особенности. (<i>Т-х</i>)- диаграммы тернарных систем Седло как пример специфики тройных диаграмм. Примеры.
1	2	3
	Практич	ческие занятия.
2.1	Методы исследования фазовых диаграмм (ФД). Прямые методы.	Тензиметрические методы исследования. Динамические и статические методы. Массспектрометрия, манометрический и нульманометрический методы. Метод вспомогательного компонента в исследованиях фазовых диаграмм.
2.2.	Косвенные методы исследования ФД	Электрофизические, дилатометрические, пикнометрические и пр. методы исследования.
2.3.	Методы направленного синтеза фаз, имеющих заметные давления равновесных насыщенных паров собственных компонентов. Значение данных о фазовых диаграммах	Т-х - сечения фазовых диаграмм. Влияние давления. Методы синтеза конденсированных фаз с прецизионно заданным составом на основе известных фазовых диаграмм в органических и неорганических системах. Некоторые рекомендации в синтезе соединений заданной нестехиометрии.
2.4.	Методы направленного синтеза фаз и регулирование нестехиометрии малолетучих фаз	Метод вспомогательного компонента в синтезе фаз заданного состава и структуры.
2.5.	Методы разделения жидких фаз с учетом данных о фазовых диаграммах	Бинарные диаграммы жидкость - пар . Понятие азеотропного состава. Смещение азеотропной точки. Законы Коновалова и Вревского. Отклонения растворов от идеальности. Верхняя и нижняя азеотропные точки. Критерий Рейдлиха—Кистлера и его связь с уравнением Гиббса - Дюгема.
2.6.	Методы разделения и очистки твердых фаз с учетом данных о фазовых диаграммах	Методы селективного растворения и флотации в случае гетерофазной системы. Транспортные химические методы

13.2. Темы (разделы) дисциплины и виды занятий

		Виды занятий (часов)				
№ п/п	Наименование раздела дисциплины	Лекции	Практи- ческие	Лабораторные	Самостоятельн ая работа	Всего
1.	Введение. Гомогенное и гетерогенное равновесия.	3	0	0	8	11
2.	Фазовые равновесия в однокомпонентных системах	3	0	0	8	11
3.	Особенности некоторых конкретных фазовых диаграмм однокомпонентных систем. Фазы высоких давлений.	3	0	0	8	11
4.	Фазовые равновесия в двухкомпонентных системах. Примитивные взаимодействия.	3	0	0	8	11
5	Фазовые равновесия в двухкомпонентных системах. Сложные взаимодействия с образованием промежуточных фаз	3	0	0	8	11
6.	Фазовые равновесия в трехкомпонентных системах и в системах с большей компонентностью.	3	0	0	8	11
7.	Методы исследования фазовых диаграмм (ФД). Прямые методы.	0	3	0	8	11
8.	Косвенные методы исследования ФД	0	3	0	8	11
9.	Методы направленного синтеза фаз, имеющих заметные давления равновесных насыщенных паров собственных компонентов. Значение данных о фазовых диаграммах	0	3	0	8	11
10	Методы направленного синтеза фаз и регулирование нестехиометрии малолетучих фаз	0	3	0	12	15
11	Методы разделения жидких фаз с учетом данных о фазовых диаграммах (ФД)	0	3	0	12	15
12	Методы разделения и очистки твердых фаз с учетом данных о ФД	0	3	0	12	15
	Итого:	18	18	0	108	144

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение практических заданий, тестов, заданий текущей аттестации и т.д.)

Организация изучения дисциплины предполагает:

- изучение основных и дополнительных литературных источников;
- выполнение практического задания;
- текущий контроль успеваемости в форме устного опроса и защиты рефератов по основным разделам дисциплины.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
	Халдояниди К.А.Фазовые диаграммы гетерогенных систем с трансформациями /
1	К.А. Халдояниди. – Новосибирск: Ин-т неорганической химии СО РАН, 2004 382
	c.

б) дополнительная литература:

№п/п	Источник
2	Физическая химия материалов и процессов электронной техники: учебное пособие Учебное пособие для ВУЗ'ов по направлению специальности "Химия" / И.М. Кувшинников, Э.М. Эйбатова Изд. Московского государственного открытого университета, 2011 г. С.80
3	Тонков Е. Ю. Фазовые диаграммы соединений при высоком давлении. /Е. Ю. Тонков М.: Наука, 1983 – 208 с.
4	Зломанов В.П. P - T - x диаграммы состояния систем металл — халькоген / В.П. Зломанов. — М.: Наука, 1987 178 с.
5	Глазов В.М./ Химическая термодинамика и фазовые равновесия / В.М. Глазов, Л.М.Павлова: 2-е изд., перераб. и доп. – М.: Металлургия, 1988 – 325 с.
6	Федоров П.И. Ошибки при построении диаграмм состояния двойных систем / П.И.Федоров, П.П Федоров., Д.В. Дробот - М.: МИТХТ им. М.В. Ломоносова, 2005, - 181 с.
7	Петров Д.А. Двойные и тройные системы / Д.А. Петров М.: Металлургия, 1986 256 с.
8	Танганов Б.Б. Физико-химические методы анализа (учебное пособие) /Б.Б. Танганов Изд. Восточно-Сибирского государственного технологического университета Улан-Удэ, 2009 356 с.
9	Вест А. Химия твердого тела. Теория и приложения: В 2-х ч. / А. Вест; пер. с англ М.: Мир, 1988. – Ч.1 558 с.
10	Суворов А.В. Термодинамическая химия парообразного состояния / А.В.Суворов Л.: Химия, 1970 208 с.
11	Завражнов А.Ю. Исследование P - T - x диаграмм халькогенидов галлия при помощи вспомогательного компонента / A .Ю. Завражнов // Журн. неорган. химии. -2003 . $-T$. 48 , № 10 . $-C$. 1722 - 1736 .
12	Xимические транспортные реакции в управлении составом нестехиометрических кристаллов / A . HO . HO HO HO HO HO HO HO HO

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
13	www.lib.vsu.ru
14	Интернет портал для химиков http://www.chemweb.com
15	Интернет портал по фазовым диаграммам http://www.himikatus.ru

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник		
1	Федоров П.И. Ошибки при построении диаграмм состояния двойных систем / П.И.Федоров, П.П Федоров., Д.В. Дробот М.: МИТХТ им. М.В. Ломоносова, 2005, 181 с.		
2	Вест А. Химия твердого тела. Теория и приложения: В 2-х ч. / А. Вест; пер. с англ М.: Мир. 1988 Ч.1 558 с.		

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

обзорные, проблемные: Лекции: вводные, поточные, семинарские занятия, контрольные работы коллоквиумы, рубежные коллоквиумы, самостоятельные и лабораторные работы, прием лабораторных работ, итоговое занятие. Дистанционные образовательные технологии доступны ПО адресу https://vk.com/club186352798.

18. Материально-техническое обеспечение дисциплины: стандартное оборудование лабораторий по общей и неорганической химии – лабораторные столы, вытяжные системы, технохимические и аналитические весы, печи, сушильные шкафы, компьютеры, лабораторная посуда, химические реактивы и т. п. (к. 358-1, к.358-2, к. 166). Эти средства более конкретно

представлены в следующей таблице.

предс	· · · · · · · · · · · · · · · · · · ·	цующей таблице	-	
$N_{\underline{0}}$	Шифр	Название	№ и название	Оборудование
стро	дисциплины	дисциплины	аудитории	
ки в УП				
15	Б1.В.ДВ.02.02	Фазовые равновесия в много-компонентных системах	439 Лекционная аудитория им. профессора Я.А. Угая 358 Учебная лаборатория им. профессора А.П. Палкина. Практикум по общей и неорганической химии	Ноутбук, проектор, экран Химическая посуда и реактивы Аквадистиллятор ДЭ-10 (Тюмень) Баня водяная LВ-140 — 2шт. Весы "Ohaus"AR -2140 Весы аналитические HTR-224 CE Shinko Весы ACOM JW-1 Мешалка магнитная без нагрева Big squid - 2шт. Термостат LT 311 Фотометр фотоэлектрический КФК-3-01-"ЗОМЗ" Шкаф вытяжной - 2шт. Шкаф вытяжной для работы с кислотами - 2шт Шкаф сушильный ШС-80-01

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание компетенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС* (средства оценивания)
1	2	3	4
ПКВ-1	Знать: Основные типы	1.1. Гомогенное и	KP-1
Владение современными компьютерными технологиями планировании исследований, получение и обработка результатов научных экспериментов, сбор, обработка, хранение, представления в передаче научной информации	фазовых равновесий в одно-, двух- и трехкомпонентных системах, их изображение на диаграммах состояний	гетерогенное равновесия. 1.2. Фазовые равновесия в однокомпонентных системах 1.3. Особенности некоторых конкретных фазовых диаграмм однокомпонентных систем. Фазы высоких давлений. 1.4. Фазовые равновесия в двухкомпонентных системах. Примитивные взаимодействия.	
ПКВ- 2	Уметь: Теоретически прогнозировать и экспериментально реализовывать несложные задачи неорганического и органического синтеза с учетом информации о фазовой диаграмме.	1.5. Фазовые равновесия в двухкомпонентных системах. Сложные взаимодействия с образованием промежуточных фаз. 1.6. Фазовые равновесия в трехкомпонентных системах, а также в системах с большей компонентностью.	Тест-1
	Владеть: Возможностями оценки термических, барических и концентрационных режимов ведения синтеза нестехиометрических соединений в квазиравновесных условиях с учетом данной конкретной диаграммы состояний	2.1. Методы исследования фазовых диаграмм (ФД). Прямые методы. 2.2. Косвенные методы исследования ФД 2.3. Методы направленного синтеза фаз, имеющих заметные давления равновесных насыщенных паров собственных компонентов. Значение данных о фазовых диаграммах 2.4. Методы направленного синтеза фаз и регулирование	Тест-2

	нестехиометрии малолетучих фаз 2.5. Методы разделения жидких фаз с учетом данных о фазовых диаграммах 2.6. Методы разделения и очистки твердых фаз с учетом данных о фазовых диаграммах	
Промежуточная аттестация (зачет)	K	ИМ

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на экзамене/зачете используются следующие показатели (ЗУНы из 19.1):

- 1) знание учебного материала и владение понятийным аппаратом важнейшими химическими понятиями и основными учениями; биологическую роль элементов и их соединений.;
- 2) умение связывать теорию с практикой;
- 3) умение иллюстрировать ответ примерами, фактами, данными научных исследований;
- 4) умение применять знания теоретических основ химии для объяснения свойств веществ и реакций, решать профессиональные задачи.
- 5) владеть понятийным аппаратом данной области науки (теоретическими основами дисциплины), способностью иллюстрировать ответ примерами, фактами, данными научных исследований, применением теоретических знаний для решения практических задач

Для оценивания результатов обучения на экзамене (зачете с оценкой) используется 4-балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Для оценивания результатов обучения на зачете используется - зачтено, не зачтено Соотношение показателей, критериев и шкалы оценивания результатов обучения.

осотношение показатолей, критериев и шкалы оцениванил рес	Соотношение показателей, критериев и шкалы оценивания результатов обучения.			
Критерии оценивания компетенций	Уровень сформиров анности компетенци й	Шкала оценок		
Полное соответствие ответа обучающегося всем перечисленным критериям. Продемонстрировано знание важнейших химических понятий и учений, умение использовать знание теоретических основ химии для объяснения свойств веществ и реакций, владение важнейшими элементами техники лабораторного эксперимента.	Повышенны й уровень	Отлично		
Ответ на контрольно-измерительный материал не соответствует одному (двум) из перечисленных показателей, но обучающийся дает правильные ответы на дополнительные вопросы. Содержатся отдельные пробелы в области теоретических основ химии.	Базовый уровень	Хорошо		
Обучающийся владеет частично теоретическими основами дисциплины, не умеет применять теоретические знания для решения практических вопросов (задач).	Пороговый уровень	Удовлетвори- тельно		
Ответ на контрольно-измерительный материал не соответствует любым трем(четырем) из перечисленных показателей. Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые ошибки в ответах по всем разделам химии.	_	Неудовлетво- рительно		

19.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы 19.3.1. Перечень типовых вопросов к зачету

Перечень вопросов к зачету:

- 1. Условия и критерии гомогенного равновесия
- 2. Константа гомогенного равновесия и ее связь с химическими потенциалами компонентов, парциальными давлениями и концентрациями веществ
- 3. Гетерогенные фазовые равновесия в двухкомпонентных системах. Условия гетерогенного равновесия.
- 4. Фазовые равновесия в однокомпонентных системах. Критические точки и точки трехфазного равновесия.
- 5. Фазовые диаграммы однокомпонентных систем на некоторых примерах (предложить самим). Фазовая диаграмма воды
- 6. Фазовые переходы в однокомпонентных и квазиоднокомпонентных системах при высоких давлениях. Диаграмма состояния воды, углерода, нитрида бора, кремния, галлия, церия (с критической точкой)
- 7. Правило фаз Гиббса (вывод и применение; примеры)
- 8. Жидкие кристаллы, их структура, свойства, классификация. Фазовые диаграммы с участием жидких кристаллов.
- 9. Фазовые превращения 1 и 2 рода по Эренфесту. Реконструктивные и деформационные превращения по Бюргеру
- 10. Двухкомпонентные системы: диаграммы с расслоением в жидкой фазе.
- 11. Двухкомпонентные системы: эвтектические диаграммы. Понятие о вырожденной эвтектике. Ретроградный солидус.
- 12. Особенности кривой линии ликвидус. Ретроградный ликвидус. Уравнение Шредера.
- 13. Двухкомпонентные системы: непрерывный ряд твердых растворов. Условия непрерывной растворимости. Диаграммы с минимумом и максимумом. Уравнение Ван-Лаара.
- 14. Двухкомпонентные системы: системы с промежуточным соединением. Перитектические и дистектические диаграммы. Уравнение Вагнера-Виланда. Проблема дальтонидов и бертоллидов.
- 15. Двухкомпонентные системы: фазовые диаграммы с исключительно твердофазными превращениями.
- 16. Методы исследования T-x диаграмм. Понятие физико-химического анализа.
- 17. Термография. Дифференциально-термический анализ как частный случай термографии
- 18. *Р-Т* диаграммы двухкомпонентных систем. Основные понятия.
- 19. Тензиметрические методы исследования.
- 20. Особенности фазовых диаграмм в трех- и многокомпонентных системах. Триангуляция. Квазибинарные диаграммы.
- 21. Особенности фазовых диаграмм «алмазоподобных» соединений $(A^{\rm III}B^{\rm V})$ и соответствующих промежуточных соединений.
- 22. Способы роста кристаллов и выбор этих способов в зависимости от фазовых диаграмм и свойств получаемого кристалла
- 23. Р-Т диаграммы. Основные понятия
- 24. Способы очистки органических соединений и физико-химические основы такой очистки
- 25. Особенности отклонения от стехиометрии и точечные дефекты кристаллов неорганических / органических (на выбор) веществ
- 26. Стеклообразное состояние вещества и его особенности
- 27. *Т-х* <u>сечения</u> фазовых диаграмм. Влияние давления. Бинарные диаграммы "жидкость пар". Понятие азеотропного состава. Смещение азеотропной точки. Отклонения от идеальности
- 28. Методы синтеза конденсированных фаз с прецизионно заданным составом на основе известных фазовых диаграмм в органических и неорганических системах
- 29. Метод вспомогательного компонента в исследованиях фазовых диаграмм
- 30. Метод вспомогательного компонента в синтезе соединений заданной нестехиометрии

Пример КИМ к текущей аттестации (зачет)

УТВЕРЖДАЮ

Заведующий кафедрой общей и неорганической химии

Д.х.н. проф. В.Н. Семенов

Направление подготовки/специальность

04.03.01 - теоретическая и прикладная химия

Дисциплина Б1.В.ДВ.02.02 – Фазовые равновесия в многокомпонентных системах

 Форма обучения
 очное

 Вид контроля
 зачет

Вид аттестации промежуточная

Контрольно-измерительный материал № 1

- 1. Двухкомпонентные системы: эвтектические диаграммы. Понятие о вырожденной эвтектике. Ретроградный солидус.
- 2. Синтез неорганических соединений в расплаве. Расплав в качестве растворителя. Особенности кристаллизации из расплава. Получение монокристаллов методами Бриджмена, Чохральского

Преподаватель:	А.Ю.	Завражнов
----------------	------	-----------

19.3.2 Перечень практических заданий ---

19.3.3 Тестовые задания.

Контрольная работа №1

- **1.** Если хорошенько потрясти баллон со сжатым хлором или пропаном, то можно услышать, как внутри плещется жидкость. Однако такого звука не услышать, если аналогичное действие совершить по отношению к баллону с водородом или кислородом. Почему в этих баллонах жидкость не обнаруживается? Измениться ли ситуация, взять очень прочный баллон и закачать газ $(H_2$ или $O_2)$ при большем давлении?
- **2.** Кристаллический йод плавится при температуре $+114\,^{\circ}$ С при давлении 90 мм рт ст. (тройная точка), а кипит при $+184\,^{\circ}$ С. Таким образом, давление в точке плавления ниже атмосферного точно также, как и для воды.
- *а*) Почему же говорят, что кристаллический йод при нагревании возгоняется, а лèд при нагревании плавится без возгонки?
- б) Как аудитории можно продемонстрировать как плавление, так и сублимацию йода, имея под рукой только нагреватель, открытую пробирку и кристаллический йод?
- *в*) Изобразить примерный вид фазовой диаграммы йода, если известно, что твердый йод тонет в расплаве этого вещества.
- **3.** Не пользуясь никакими справочными данными, кроме указанных в условие задачи ниже, оценить вероятность взрыва запаянной кварцевой ампулы, помещенной в сушильный шкаф при 200 ℃ и содержащей 3 г воды. Объем ампулы 50 см³. Известно, что кварцевые ампулы не слишком большого диаметра (<1 см) выдерживают давление до 50 атм. Температуре 0 °C соответствует давление насыщенного пара воды .4,2 мм.рт.ст.
- **4.** Объяснить противоречие: капля воды находится при комнатной температуре $(+20 \, ^{\circ}\text{C})$ и атмосферном давлении в равновесии с насыщенным водяным паром в воздушной атмосфере. Однако, судя по фазовой диаграмме воды, точка $(+20 \, ^{\circ}\text{C}, 1 \, \text{атм})$ должна принадлежать области

существования единственной фазы — жидкой воды (без всяких сосуществований с паровой фазой, т.е. без гетерогенного равновесия $L \rightleftarrows V$.

- **5.** Для увеличения срока службы лампочки накаливания колбу с вольфрамовой спиралью заполняют аргоном. Часто считают, что роль Ar заключается в понижении равновесного давления пара вольфрама: за счет этого давление паров вольфрама понижается (по принципу Ле-Шателье) и спираль испарятся менее интенсивно. Так ли это?
- **6.** Для кристаллического нитрида бора BN известно 3 модификации, которые (в различных условиях) являются термодинамически стабильными. Предсказать структурный тип этих модификаций и тип химических связей в каждой из них. Какая из этих модификаций устойчива при наибольшем (и наименьшем) давлении?
- **7.** Предсказать, появления каких новых полиморфных (аллотропных) модификаций **углерода** можно ожидать в дополнение к известным алмазу, графиту, карбину и фуллеренам. Новые фуллереновые формы (типа C₂₇₀) не рассматривать.

Тестовое задание №1

- **1.** По данным ДТА и концентрационным зависимостям тепловых эффектов построить T-x фазовую диаграмму бинарной системы (данные прилагаются).
- 2. Предложить методы синтеза конкретной бинарной фазы с учетом имеющейся в литературе информации о данной конкретной бинарной диаграмме (литературный поиск осуществляется самостоятельно).

Тестовое залание №2

- 1. С учетом указанной преподавателем немолекулярной твердой фазы предложить оптимальный способ ее очистки различными известными вам методами.
- 2. С учетом указанного преподавателем соединения, которое в любом агрегатном состоянии является молекулярным предложить оптимальный способ очистки и выделения этого соединения в максимально чистом виде с использованием различных известных вам методов.

19.3.5 Темы курсовых работ -----

19.3.6 Темы рефератов ------

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме письменных контрольных работ и практико-ориентированных заданий. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением с промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и практическое задание, позволяющее оценить степень сформированности умений и навыков.

При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.