МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ Заведующий кафедрой математического анализа

> А.С.Шабров 13.05.2022

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.О.02.08 Методы оптимизаций

Код и наименование дисциплины в соответствии с учебным планом

1. Код и наименование направления подготовки/специальности:

10.05.04 Информационно-аналитические системы безопасности

2. Профиль подготовки/специализация:

Автоматизация информационно-аналитической деятельности Информационная безопасность финансовых и экономических структур

- 3. Квалификация (степень) выпускника: Специалист по защите информации
- 4. Форма обучения: Очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** Кафедра математического анализа
- 6. Составители программы:

(ФИО, ученая степень, ученое звание) Зверева Маргарита Борисовна, канд. физ-мат. наук, доцент

- **7. Рекомендована:** Научно-методическим Советом математического факультета, протокол № 0500-03 от 24.03.2022
- 8. Учебный год: 2023-2024 Семестр(ы): 4

9 .Цели и задачи учебной дисциплины:

Цели изучения дисциплины:

- подготовка студента к восприятию математического аппарата специальных дисциплин, чтению специальной литературы;
- получение базовых знаний и формирование основных навыков по методам оптимизации, необходимых для решения задач, возникающих в практической деятельности;
 - развитие логического мышления;
- формирование необходимого уровня математической подготовки для понимания других математических дисциплин.

Задачи дисциплины:

- демонстрация на примерах математических понятий и методов сущности научного подхода, специфики математики, ее роли в развитии других наук;
- овладение студентами основными математическими понятиями методов оптимизации;
- выработка умений анализировать полученные результаты, решать типовые задачи, приобретение навыков работы со специальной математической литературой;
- формирование умений использовать математический аппарат для решения теоретических и прикладных задач.

10. Место учебной дисциплины в структуре ООП:

Дисциплина «Методы оптимизаций» относится к обязательной части и входит в группу учебных дисциплин "Физико-математические науки" Федерального государственного образовательного стандарта высшего профессионального образования по направлению 10.05.04 «Информационно-аналитические системы безопасности».

Дисциплина «Методы оптимизаций» базируется на знаниях, полученных в рамках курсов «Математический анализ», «Дифференциальные уравнения». Приобретенные в результате обучения знания, умения и навыки используются во всех без исключения математических и естественнонаучных дисциплинах, модулях и практиках. Полученные знания могут быть использованы при продолжении образования в аспирантуре и в дальнейшей трудовой деятельности выпускников.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК-3	компетенции Способен на основании совокупности существующих математических методов разрабатывать и реализовывать и реализовывать процедуры решения задач профессиональной деятельности	ОПК-3.9	Использует математические методы методов оптимизации при решении задач профессиональной деятельности	Знать: основные определения, понятия и идеи изучаемых разделов курса, основные способы принятия оптимальных решений, основные определения, понятия и идеи изучаемых разделов курса. Уметь: выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, формулировать и доказывать основные результаты. Владеть математическим аппаратом, необходимым для самообразования, математическим аппаратом для формализации, анализа и выработки решений.

12. Объем дисциплины в зачетных единицах/час.(в соответствии с учебным планом) 4/144

Форма промежуточной аттестации(зачет/экзамен) экзамен

13. Виды учебной работы

	Трудоемкость (часы)		
Вид учебной работы	Росго	По семестрам	
	Всего	4 семестр	
Аудиторные занятия	68	68	
в том числе: лекции	34	34	
практические			
лабораторные	34	34	
Самостоятельная работа	76	76	
Итого:	144	144	

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины				
	1. Лекции					
1.1	Простейшая задача вариационного исчисления.	Теорема Ферма для функционала в линейном нормированном пространстве. Первая вариация. Уравнение Эйлера. Лемма Лагранжа. Частные случаи уравнения Эйлера. Задача о брахистохроне. Теорема Дю-Буа-Реймона. Гладкость экстремали в простейшей задаче вариационного исчисления.				
1.2	Условия экстремума в простейшей задаче вариационного исчисления	Условие Лежандра. Усиленное условие Лежандра. Уравнение Якоби. Вторая вариация. Теоремы Штурма. Условие, эквивалентное условию Якоби. Достаточные условия экстремума.				
1.3	Задачи вариационного исчисления	Функционал, зависящий от векторной функции. Задача Больца. Изопериметрическая задача. Уравнение Эйлера-Пуассона, Эйлера-Остроградского. Условный экстремум в задачах вариационного исчисления. Метод множителей Лагранжа. Задача с подвижной границей.				
1.4	Задачи линейного программирования	Экстремум линейного функционала на множестве в конечномерном пространстве. Графический метод решения задач линейного программирования. Симплексный метод. Теоремы двойственности. Транспортные задачи.				
1.5	Задачи оптимального управления	Постановка задачи оптимального управления. Принцип оптимальности. Принцип Беллмана динамического программирования. Уравнение Беллмана. Принцип максимума Понтрягина. Теорема о числе переключений. Метод решения задач без ограничения. Метод Ньютона. Методы сопряженных направлений. Численные методы решения задач оптимизации				
	2	. Лабораторные занятия				
2.1	Простейшая задача вариационного исчисления.	Уравнение Эйлера Частные случаи уравнения Эйлера.				
2.2	Условия экстремума в простейшей задаче вариационного исчисления	Условие Лежандра. Усиленное условие Лежандра. Уравнение Якоби. Условие, эквивалентное условию Якоби. Достаточные условия экстремума.				
2.3	Задачи вариационного исчисления	Функционал, зависящий от векторной функции. Уравнение Эйлера-Пуассона. Условный экстремум в задачах вариационного исчисления. Метод множителей Лагранжа. Задача Больца.				
2.4	Задачи линейного программирования	Графический метод решения задач линейного программирования. Симплексный метод. Транспортные задачи.				
2.5	Задачи оптимального управления	Постановка задачи оптимального управления. Принцип максимума Понтрягина.				

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы	Виды занятий (часов)					
п/п	паименование темы (раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего	
01	Простейшая задача вариационного исчисления.	7		7	15	29	
02	Условия экстремума в простейшей задаче вариационного исчисления	7		7	15	29	
03	Задачи вариационного исчисления	6		6	16	28	
04	Задачи линейного программирования	7		7	15	29	
05	Задачи оптимального управления	7		7	15	29	
	Итого:	34		34	76	144	

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение практических заданий, тестов, заданий текущей аттестации и т.д.)

Для обеспечения систематической и регулярной работы по изучению дисциплины и успешного прохождения аттестаций студенту рекомендуется придерживаться следующего порядка обучения:

- 1. Самостоятельно определить объем времени, необходимого для проработки каждой темы.
- 2. Регулярно изучать каждую тему дисциплины как по конспектам лекции, так и по рекомендованной литературе, используя различные формы индивидуальной работы.
- 3. Согласовывать с преподавателем виды работы по изучению дисциплины.
- 4. По завершении отдельных тем передавать выполненные работы (домашние задания) преподавателю.
- 5. При успешном прохождении рубежных контрольных испытаний студент может претендовать на сокращение программы промежуточной (итоговой) аттестации по дисциплине.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников) а) основная литература:

№ п/п	Источник
	Дифференциальные и интегральные уравнения, вариационное исчисление в
1	примерах и задачах : учебное пособие / А.Б. Васильева [и др.] .— Изд. 3-е, испр. —
	СПб; М.; Краснодар: Лань, 2010.
	Морс М. Вариационное исчисление в целом / М. Морс; пер. с англ. Л.Б.
2	Вертгейма; под ред. И.А. Тайманова. — М.; Ижевск: Институт компьютерных
	исследований: Регулярная и хаотическая динамика, 2010.
	Акулич И.Л. Математическое программирование в примерах и задачах : учебное
3	пособие / И.Л. Акулич .— Изд. 3-е, стер. — Санкт-Петербург; Москва; Краснодар
	: Лань, 2011 .
	Аттетков А.В. Методы оптимизации: учебное пособие: [для студ. высш. учеб.
4	заведений] / А.В. Аттетков, В.С. Зарубин, А.Н. Канатников .— Москва : РИОР :
	ИНФРА-М, 2013.
	Васильев Ф.П. Методы оптимизации: [учебник для студ. вузов, обуч. по
5	специальности ВПО 010501 "Прикладная математика и информатика"] : [в 2 ч.] /
	Ф.П. Васильев .— Москва : Изд-во МЦНМО, 2011.

б) дополнительная литература:

№ п/п	Источник			
6	Покорный Ю.В. Оптимальные задачи: [учебное пособие] / Ю.В. Покорный .—			
	М.; Ижевск: Регуляр. и хаотич. динамика: Ин-т компьютер. исслед., 2008.			
7	Покорный Ю.В. Краткий курс математической теории оптимальных задач			
/	Воронеж: ОАО "Центрально-Черноземное издательство", 2007.			
8	Понтрягин Л.С. Принцип максимума в оптимальном управлении / Л.С.			
0	Понтрягин М.: Наука, 1989.			
9	Ахиезер Н.И. Лекции по вариационному исчислению / Н.И. Ахиезер М.:			
9	Гостехиздат, 1955.			
10	Галлеев Э.М. Краткий курс теории экстремальных задач / Э.М. Галлеев, В.М.			
10	Тихомиров М.: Изд-во МГУ, 1989.			
11	Гельфанд И.М. Вариационное исчисление / И.М. Гельфанд, С.В. Фомин М.:			
' '	Физматлит, 1961.			
	Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление:			
12	учебник для физ. и физмат. фак. ун-тов / Л. Э. Эльсгольц 4-е изд М. :			
	Эдиториал УРСС, 2000.			

в)информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Pecypc
13	Электронный каталог Научной библиотеки Воронежского государственного
13.	университета. – (http://www.lib.vsu.ru/)

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1	Дидактический материал по вариационному исчислению / Ю.В. Покорный [и др.] -Воронеж : ИПЦ ВГУ, 2007.
2	Дидактический материал по методам оптимизации / Ю.В. Покорный [и др.] -Воронеж : ИПЦ ВГУ, 2007.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

OC Windows, Linux, программы Mathematica, Maple.

Проверка заданий и консультирование посредством e-mail, Skype.

18. Материально-техническое обеспечение дисциплины:

Типовое оборудование аудитории для лекционных занятий, учебные пособия, компьютер.

19. Оценочные средства для проведения текущей и промежуточной аттестаций:

Порядок оценки освоения обучающимся учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1	Простейшая задача вариационного исчисления.	ОПК -3	ОПК-3.9	Опрос
2	Условия экстремума в простейшей задаче вариационного исчисления	ОПК -3	ОПК-3.9	Контрольная работа №1
3	Задачи вариационного исчисления	ОПК -3	ОПК-3.9	Опрос
4	Задачи линейного программирования	ОПК -3	ОПК-3.9	Опрос
5	Задачи оптимального управления	ОПК -3	ОПК-3.9	Контрольная работа №2
	Промежуточна Форма контроля	Вопросы к экзамену		

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Перечень вопросов к экзамену:

- 1. Абстрактная теорема Ферма.
- 2. Простейшая задача вариационного исчисления. Уравнение Эйлера.
- 3. Лемма Лагранжа.
- 4. Первые интегралы в частных случаях уравнения Эйлера.
- 5. Задача о брахистохроне (с решением)
- 6. Теорема и лемма Дю-Буа-Реймона.
- 7. Гладкость экстремалей.
- 8. Задача Пуассона
- 9. Функционалы от векторных функций
- 10. Задача Остроградского
- 11.Задача Больца
- 12.Вторая вариация. Теорема о знаке второй вариации. Вторая вариация в простейшей задаче вариационного исчисления.
- 13. Теорема Лежандра.
- 14. Теорема Лежандра-Лагранжа
- 15. Условие Якоби
- 16. Неосцилляция уравнения Якоби
- 17. Теорема Штурма
- 18. Теорема о неосцилляции (об эквивалентных условиях)
- 19. Усиленная теорема Якоби
- 20. Достаточное условие слабого экстремума
- 21. Лемма об оценке «хвоста».
- 22. Теорема об экстремуме линейного функционала

- 23. Выпуклая оболочка. Теорема о выпуклой оболочке.
- 24. Критерий выпуклости.
- 25. Теорема о достижении экстремума в крайней точке.
- 26. Алгоритм симплексного метода
- 27. Постановка задачи оптимального управления.
- 28. Лемма 1 о сдвиге управления.
- 29. Лемма 2 о суперпозиции управлений.
- 30. Принцип оптимальности.
- 31. Уравнение Беллмана для задачи быстродействия.
- 32. Принцип максимума Понтрягина.

Перечень практических заданий

- 1. Решение простейшей задачи вариационного исчисления.
- 2. Решение простейшей задачи вариационного исчисления для частных случаев.
- 3. Решение задачи Пуассона.
- 4. Решение задачи для функционалов от векторных функций.
- 5. Решение задачи Больца.
- 6. Исследование функционалов на экстремум.
- 7. Решение задач на проверку выпуклости множеств.
- 8. Решение задач линейного программирования графическим методом.
- 9. Решение задач линейного программирования симплексным методом.
- 10. Решение транспортных задач.
- 11. Решение задач оптимизации с помощью принципа максимума Понтрягина.

Комплекты заданий для контрольных работ по дисциплине методы оптимизаций

Контрольная работа №1

Вариант 1

Задание 1.

Найдите допустимые экстремали для заданных функционалов:

Найдите допустимые экстремали для заданных фу

$$\Phi(u) = \int_{0}^{1} (u''^2) dx \quad u(0) = u'(0) = 0 \quad u(1) = u'(1) = 0$$

$$\Phi(u) = \int_{-1}^{0} (12xu - u'^2) dx \quad u(-1) = 1 \quad u(0) = 0$$

Задание 2.

Исследуйте на слабый экстремум

$$\int_{0}^{1} (x^{2} + 9x^{2}) dt \qquad x(0) = x(1) = 0$$

Вариант 2

Задание 1.

Найдите допустимые экстремали для заданных функционалов:

$$\Phi(u) = \int_{0}^{b} (u^{2} + 2xuu')dx \quad u(a) = A \quad u(b) = B$$

$$\Phi(u) = \int_{0}^{3} (360x^{2}u - u''^{2})dx \quad u(0) = 0 , u'(0) = 1, u(3) = 0, u'(3) = 2.5$$

Задание 2.

Исследуйте на слабый экстремум

$$\int_{1}^{2} (t^{2}x'^{2})dt \qquad x(1)=3, \quad x(2)=1$$

Контрольная работа №2

Вариант 1

Задание 1.

Решите задачу линейного быстродействия

$$\begin{cases} x_1' = 3u \\ x_2' = -x_1 \end{cases} \quad 0 \le u \le 2$$

Задание 2.

Задание 2.
$$L = 3x_1 + x_2 \rightarrow \max \text{ при ограничениях } \begin{cases} 2x_1 + 3x_2 \leq 6, \\ 2x_1 - 3x_2 \leq 3, \\ x_1 \geq 0, \quad x_2 \geq 0. \end{cases}$$

$$L = 16x_1 + 9x_2 \rightarrow \max \text{ при ограничениях } \begin{cases} 5x_1 + 2x_2 \leq 6, \\ x_1 + 3x_2 \leq 6, \\ x_1 + 3x_2 \leq 6, \\ x_1 \geq 0, \quad x_2 \geq 0. \end{cases}$$

 x_1 и x_2 – целые.

Вариант 2

Задание 1.

Решите задачу линейного быстродействия

$$\begin{cases} x_1' = u \\ x_2' = x_1 - u \end{cases} -1 \le u \le 3$$

Задание 2.

$$L = 2x_1 - 10x_2 \to \min \ \text{при ограничениях} \begin{cases} x_1 - x_2 \ge 0, \\ x_1 - 5x_2 \ge -5, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

$$L = 2x_1 + 3x_2 \to \min \ \text{при ограниченияx} \begin{cases} 2x_1 + x_2 \ge 9, \\ 3x_1 - 4x_2 \ge 3, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

$$x_1 \text{ и } x_2 - \text{целые}.$$

Для оценивания результатов обучения на экзамене используются следующие показатели:

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Обучающийся в полной мере владеет понятийным аппаратом данной области науки (теоретическими основами дисциплины), способен иллюстрировать ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения практических задач.	Повышенный уровень	Отлично
Сформированные, но содержащие отдельные пробелы знания основных определений, понятий и идей изучаемого курса, знание с небольшими недочетами доказательств основных результатов. Сформированное, но содержащее отдельные пробелы умение использовать математический аппарат для формализации, анализа и выработки решений.	Базовый уровень	Хорошо
Неполное представление об основных определениях, понятиях и идеях изучаемого курса, незнание доказательств основных результатов. Не полностью сформированное умение использовать математический аппарат для формализации, анализа и выработки решений.	Пороговый уровень	Удовлетвори- тельно
Фрагментарные знания или отсутствие знаний и умений	-	Неудовлетвори- тельно