МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГООБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой вычислительной математики и прикладных информационных технологий (ВМиПИТ)

М. Леденева 21.06.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.15 Теория вероятностей

1. Код и наименование направления подготовки/специальности:

О2.03.02 Фундаментальная информатика и информационные технологии

- 2. Профиль подготовки/специализация: Инженерия программного обеспечения
- 3. Квалификация выпускника: бакалавр
- 4. Форма обучения: очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** кафедра вычислительной математики и прикладных информационных технологий (ВМиПИТ)
- **6. Составитель программы:** Новикова Нелля Михайловна, д.т.н., профессор, профессор кафедры ВМ и ПИТ
- 7. Рекомендована: НМС факультета ПММ протокол №10 о 15.06.2021

Учебный год 2022-2023 **Семестр:** 3

9. Цели и задачи учебной дисциплины

Цель учебной дисциплины: сформировать у обучающихся комплекс знаний по основным разделам теории вероятностей как основы для формализации и решения прикладных задач в условиях стохастической неопределенности. *Задачи учебной дисциплины:*

изучение основных разделов теории вероятностей;

формирование у обучающихся навыков решения задач из основных разделов теории вероятности, в том числе с использованием пакетов прикладных программ; ознакомление с примерами прикладных задач из области профессиональной деятельности, для формализации которых используется математический аппарат теории вероятностей.

10. Место учебной дисциплины в структуре ООП: обязательная часть.

Изучение данной дисциплины базируется на теоретических знаниях и практических навыках, полученных в результате освоения следующих дисциплин: Дискретная математика, Алгебра и геометрия, Математический анализ.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
	Способен при- менять фунда- ментальные знания, полу- ченные в обла-	ОПК-1.1	Решает типовые задачи с учетом основных понятий и общих закономерностей, сформулированных в рамках базовых дисциплин математики, информатики и естественных наук.	Знать: терминологическую базу и теоретические сведения из основных разделов теории вероятностей. Уметь: определить для конкретной задачи возможность применения тех или иных формул теории вероятностей. Владеть: навыками решения практических задач на основе математического аппарата теории вероятностей.
ОПК-1	сти математических и (или) естественных наук, и использовать их в профессиональной деятельности.	ОПК-1.2	Применяет системный подход и математические методы для формализации решения прикладных задач.	Знать: основные принципы системного подхода и особенности его реализации при использовании математического аппарата теории вероятностей. Уметь: применять системный подход для формализации прикладной задачи в условиях стохастической неопределенности. Владеть: математическими методами решения прикладных задач на основе вероятностного подхода.

12. Объем дисциплины в зачетных единицах/часах: 4/144

Форма промежуточной аттестации: экзамен

13. Трудоемкость по видам учебной работы

Вид учебной работы		Трудоемкость		
		Всего	По семестрам	
		Beero	3 семестр	.:
Контактная работа		64	64	
	лекции	32	32	
в том числе:	практические	32	32	
	лабораторные	-	-	
Самостоятельная работа		44	44	
Промежуточная аттестация (для экзамена)		36	36	
Итого:		144	144	

13.1. Содержание разделов дисциплины

	1. Лекции				
N º ⊓/⊓	Наименование раздела дисциплины	Содержание раздела дисциплины			
1.1	Общая харак- теристика дисциплины	Предмет и задачи курса. Вероятностные методы в науке и практике. Основные моменты истории развития теории вероятностей. Условия применимости вероятностных моделей. Особенности реализации системного подхода при использовании аппарата теории вероятностей.			
1.2	Вероятность. Аксиоматика Колмогорова	Случайные события. Теоретико-множественные операции над событиями. Вероятность. Аксиоматика Колмогорова. Вероятностное пространство, σ-алгебра событий. Вероятность и ее свойства. Примеры вероятностных пространств. Определение вероятности: классическое, геометрическое, статистическое.			
1.3	Вероятность сложных событий	Вероятность сложных событий. Условная вероятность. Независимость событий в совокупности. Формула полной вероятности. Формула Байеса.			
1.4	Независимые испытания Бер- нулли	Схема независимых испытаний Бернулли. Произведение вероятностных пространств. Независимые испытания Бернулли. Биномиальный закон распределения. Наивероятнейшее число успехов в схеме независимых испытаний Бернулли. Предельные теоремы в схеме Бернулли: Пуассона, дифференциальная и интегральная теоремы Муавра-Лапласа.			
1.5	Случайные ве- личины и их за- коны распреде- ления	Случайные величины и их законы распределения. Абсолютно непрерывные, дискретные, дискретнонепрерывные и сингулярные случайные величины . Функция распределения и ее свойства. Плотность распределения вероятностей и ее свойства. Законы распределения дискретных случайных величин: биномиальный, геометрический, Пуассона. Законы распределения непрерывных случайных величин: равномерный, нормальный, показательный.	moodle (Теория веро- ятностей и MC) edu.vsu.ru		
1.6	Числовые характеристики случайных величин	Числовые характеристики случайных величин. Интеграл Стилтьеса, основные свойства. Математическое ожидание и его свойства. Дисперсия и ее свойства. Моменты случайных величин. Квантиль распределения. Мода и медиана распределения.			

1.7	Многомерные (векторные) случайные величины	Многомерные (векторные) случайные величины. Многомерные функции распределения. Многомерная плотность вероятностей. Независимость случайных величин. Условный закон распределения. Условная плотность вероятностей многомерных случайных величин.		
1.8	Числовые характеристики многомерных случайных величин	Числовые характеристики многомерных случайных величин. Математическое ожидание и дисперсия случайного вектора. Корреляционный момент, коэффициент корреляции и корреляционная матрица. Свойства коэффициента корреляции и корреляционной матрицы. Нормальный случайный вектор. Условное математическое ожидание. Регрессия.		
1.9	. Функции случайных величин	Функции случайных величин. Числовые характеристики функции случайных величин. Теоремы о числовых характеристиках функций случайных величин. Функция распределения функции случайных величин. Плотность вероятностей функции случайных Плотность		
1.10	Характеристи- ческие и	Характеристические функции скалярных и векторных случайных величин и их свойства. Теоремы обращения и		
	производящие функции.	единственности. Производящая функция и ее свойства.		
1.11	Предельные теоремы теории вероятностей	Виды сходимости последовательностей случайных величин. Центральная предельная теорема (ЦПТ). Теоремы Муавра-Лапласа как частный случай ЦПТ. Примеры использования ЦПТ. Неравенства Чебышева. Закон больших чисел: теоремы Чебышева, Хинчина, Маркова. Следствия закона больших чисел: теоремы Бернулли и Пуассона.		
	T	2. Практические занятия		
2.1		тия. Действия над событиями.		
2.2	Вероятность и ее свойства. Классическое определение вероятности. Геометрическая и статистическая вероятность. Комбинаторный метод вычисления вероятностей.			
2.3	Вероятность сложных событий. Условная вероятность. Независимость событий в совокупности. Формула полной вероятности. Формула Байеса. тмооdle (Теория вероятности. Формула Байеса.			
2.4	Схема независимых испытаний Бернулли.			
2.5	Случаиные величины и законы их распределения.			
2.6	Числовые характеристики случайных величин.			
2.7	• • •			
2.8	Функции случайн	Функции случайных величин.		

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы	Виды занятий (количество часов)				
п/п	(раздела) дисциплины	Лекции	Практические	Самостоятельная работа	Всего	
1	Общая характеристика дисциплины	1	-	2	3	
2	Вероятность. Аксиоматика Колмогорова.	2	4	4	10	
3	Вероятность сложных событий	3	4	4	11	
4	Независимые испытания Бернулли	4	4	5	13	
5	Случайные величины и их законы распределения	4	6	5	15	
6	Числовые характеристики случайных величин	4	4	6	14	

	Итого:	32	32	44	108
11	Предельные теоремы теории вероятностей	3	2	3	8
10	Характеристические и производящие функции	3	2	3	8
9	Функции случайных величин	2	2	4	8
8	Числовые характеристики Многомерных случайных величин	3	2	4	9
7	Многомерные (векторные) случайные величины	3	2	4	9

14. Методические указания для обучающихся по освоению дисциплины

Аудиторные и внеаудиторные (самостоятельные) формы учебной работы студента имеют своей целью приобретение им целостной системы знаний по дисциплине «Теория вероятностей». Используя лекционный материал, учебники, дополнительную литературу, проявляя творческий подход, студент готовится к практическим занятиям, рассматривая их как пополнение, углубление, систематизацию своих теоретических знаний. Студент должен прийти в ВУЗ с полным пониманием того, что самостоятельное овладение знаниями является главным, определяющим.

Изучение каждой темы следует начинать с внимательного ознакомления с набором вопросов. Они ориентируют обучающегося, показывают, что он должен знать по данной теме. Вопросы темы как бы накладываются на соответствующую главу избранного учебника или учебного пособия. В итоге должно быть ясным, какие вопросы темы программы учебного курса, и с какой глубиной раскрыты в данном учебном материале, а какие вообще опущены.

Освоение дисциплины предполагает следующие направления работы:

- изучение понятийного аппарата дисциплины;
- изучение тем самостоятельной подготовки по учебно-тематическому плану;
- работу над основной и дополнительной литературой;
- изучение вопросов для самоконтроля (самопроверки);
- самоподготовка к практическим и другим видам занятий;
- самостоятельная работа студента при подготовке к экзамену;
- самостоятельная работа студента в библиотеке;
- изучение сайтов по темам дисциплины в сети Интернет.

Требуется творческое отношение и к самой программе учебного курса. Вопросы, составляющие ее содержание, обладают разной степенью важности. Есть вопросы, выполняющие функцию логической связки содержания темы и всего курса, имеются вопросы описательного или разъяснительного характера. Все эти вопросы не составляют сути, понятийного, концептуального содержания темы, но необходимы для целостного восприятия изучаемых проблем.

Проработка лекционного курса является одной из важных активных форм самостоятельной работы. Лекция преподавателя не является озвученным учебником, а представляет плод его индивидуального творчества. Он читает свой авторский курс со своей логикой со своими теоретическими и методическими подходами. Это делает лекционный курс конкретного преподавателя индивидуально-личностным событием, которым вряд ли студенту стоит пренебрегать. Кроме того, в своих лекциях преподаватель стремится преодолеть многие недостатки, присущие опубликованным учебникам, учебным пособиям, лекционным курсам.

В создании своего авторского лекционного курса преподаватель руководствуется двумя документами — Федеральным государственным образовательным стандартом и учебной программой. Совершенно недостаточно только слушать лекции. Важно студенту понять, что лекция есть своеобразная творческая форма самостоятельной работы. Надо пытаться стать активным соучастником лекции: думать, сравнивать известное с вновь получаемыми знаниями, войти в логику изложения материала лектором, по возможности вступать с ним по теме занятий, делайте вы-

писки текста, содержащего характеристику или комментарии уже знакомого Вам источника. Умение работать с литературой означает научиться осмысленно пользоваться источниками. Прежде чем приступить к освоению научной литературы, рекомендуется чтение учебников и учебных пособий.

Для улучшения обработки информации очень важно устанавливать осмысленные связи, структурировать новые сведения. Изучение научной, учебной и иной литературы требует ведения рабочих записей. Форма записей может быть весьма разнообразной: простой или развернутый план, тезисы, цитаты, конспект.

При подготовке к экзамену следует в полной мере использовать лекционный материал и академический курс учебника, рекомендованного преподавателем.

При использовании дистанционных образовательных технологий и электрон- ного обучения необходимо выполнять все указания преподавателей по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы

а) основная литература:

,	oblight time but ybu.		
Nº	Источник		
п/п	ИСТОЧНИК		
1	Туганбаев, А. А. Теория вероятностей и математическая статистика: учебное пособие / А. А. Туганбаев, В. Г. Крупин. – Санкт-Петербург: Лань, 2021. – 320 с. – ISBN 978-5-8114-1079-8. – Текст: электронный // Лань: электронно-библиотечная система. – URL: https://e.lanbook.com/book/167844 (дата обращения: 15.11.2021).		

б) дополнительная литература:

Nº	Источник
п/п	ИСТОЧНИК
2	Горлач, Б. А. Теория вероятностей и математическая статистика: учебно-методическое пособие / Б. А. Горлач. – Санкт-Петербург: Лань, 2021. – 320 с. – ISBN 978-5-8114-1429-1. – Текст: электронный // Лань: электронно-библиотечная система. – URL: https://e.lanbook.com/book/168478 (дата обращения: 15.11.2021).
3	Гмурман В.Е. Теория вероятностей и математическая статистика: учеб. пособие для вузов / В.Е. Гмурман. – Москва : Высш. шк., 2005. – 479 с.
4	Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: учеб. пособие для вузов / В.Е. Гмурман. – Москва : Высш. шк., 2007. – 403 с.
5	Сборник задач по теории вероятностей, математической статистике и теории случайных функций ./ Под ред. Свешникова А.А. – Москва: Лань, 2008. – 448 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=399
6	Теория вероятностей: учебник для вузов / Под ред. Зарубина В.С., Крищенко А.П. – Москва : Изд-во МГТУ им. Баумана, 2001. – 455 с.
7	Гнеденко Б.В. Курс теории вероятностей / Б.В. Гнеденко. — Москва.: Эдиториал УРСС, 2001. — 320 с.
8	Новикова Н.М. Прикладная математическая статистика: учеб. пособие / Н.М. Новикова, С.Л. Подвальный. – Воронеж : ВГТУ, 2012. – 164 с. – Ч.1. Режим доступа http://www.novikova-nm.ru
9	Новикова Н.М. Прикладная математическая статистика: учеб. пособие / Н.М. Новикова, С.Л. Подвальный. – Воронеж : ВГТУ, 2013. – 179 с. – Ч.2. Режим доступа http://www.novikova-nm.ru
10	Вентцель Е.С. Задачи и упражнения по теории вероятностей: учеб. пособие для втузов / Е.С.Вентцель, Л.А. Овчаров. – Москва : Высш. шк., 2003. – 448 с.
11	Новикова Н.М. Руководство к решению задач по теории вероятностей: учеб метод. пособие / Н.М. Новикова,. В. Г. Ляликова. – Воронеж : Изд. дом ВГУ, 2014. – 47 с. – Ч.1. Режим доступа http://www.novikova-nm.ru
12	Новикова Н.М. Руководство к решению задач по теории вероятностей: учеб метод. пособие / Н.М. Новикова,. В.Г. Ляликова. – Воронеж : Изд. дом ВГУ, 2015. – 54 с. – Ч.2. Режим доступа http://www.novikova-nm.ru

в) информационные электронно-образовательные ресурсы:

в) ипфо	рмационные электронно-образовательные ресурсы.
№ п/п	Источник

13	http://www.lib.vsu.ru/BГУ Зональная научная библиотека	
	Манита А.Д. Теория вероятностей и математическая статистика / Д.А. Манита. – Москва :	
14	МГУ, 2012. – 210 c.	
	Режим доступа: http://teorver-online.narod.ru	
15	https://intuit.ru/studies/curriculums/16083/video_courses/493/info_Теория вероятностей и ма-	
13	тематическая статистика / НОУ ИНТУИТ	
16	Ляликова, В.Г. Курс «Теория вероятностей и МС» / Образовательный портал «Электрон-	
10	ный университет ВГУ». – Режим доступа: https://edu.vsu.ru/course/view.php?id=17974	

16. Перечень учебно-методического обеспечения

	For some 1 section more plant to once a control to some
№ п/п	Источник
16	Новикова Н.М. Руководство к решению задач по теории вероятностей: учеб метод. пособие / Н.М. Новикова,. В. Г. Ляликова. – Воронеж : Изд. дом ВГУ, 2014. – 47 с. – Ч.1. Режим доступа http://www.novikova-nm.ru
17	Новикова Н.М. Руководство к решению задач по теории вероятностей: учеб метод. пособие / Н.М. Новикова,. В.Г. Ляликова. – Воронеж : Изд. дом ВГУ, 2015. – 54 с. – Ч.2. Режим доступа http://www.novikova-nm.ru

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий. Для организации занятий рекомендован онлайн-курс «Теория вероятностей и математическая статистика», размещенный на платформе Электронного университета ВГУ (LMS moodle), а также интернет-ресурсы, приведенные в п.15в.

18. Материально-технического обеспечения дисциплины:

Мебель и оборудование	Программное обеспечение
J	Текции
Специализированная мебель, компью-	Windows 10 (лицензионное ПО); Adobe
тер (ноутбук), мультимедийное обору-	Reader (свободное и/или бесплатное ПО;
дование (проектор, экран, средства зву-	Mozilla Firefox (свободное и/или бесплатное
ковоспроизведения).	ПО)
Практич	еские занятия
Специализированная мебель, компью-	Windows 10 (лицензионное ПО); Adobe
тер (ноутбук), мультимедийное обору-	Reader (свободное и/или бесплатное ПО;
дование (проектор, экран, средства зву-	Mozilla Firefox (свободное и/или бесплатное
ковоспроизведения).	ПО)

19. Оценочные средства для проведения текущей и промежуточной аттестаций

N º ⊓/⊓	Наименование раздела дисци- плины (модуля)	Компе- тенция	Индикатор(ы) достижения компетенции	Оценочные средства
1	Общая характеристика дисциплины		ОПК-1.2	Опрос
2	Вероятность. Аксиоматика Колмогорова			
3	Вероятность сложных событий		ОПК-1.1	Практико-ориентированные задания, Контрольная работа
4	Независимые испытания Бернулли			контрольная расота
5	Случайные величины и их законы распределения			
6	Числовые характеристики случайных величин	ОПК-1		П
7	Многомерные (векторные) случайные величины		ОПК-1.1	Практико-ориентированные задания,

8	Числовые характеристики Многомерных случайных величин		Контрольная работа
9	Функции случайных величин		
10	Характеристические и производящие функции.	ОПК-1.1	Практико-ориентированные задания
11	Предельные теоремы теории вероятностей	ΟΠK-1.1, ΟΠK-1.2	Практико-ориентированные задания
I	Промежуточная аттестация: форм	Перечень вопросов заданий	

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: Практико-ориентированные задания/домашние задания и Контрольные работы (2).

Контрольная работа 1

Вариант

- 1. Из последовательности чисел 1,2,...,n выбираются два числа. Какова вероятность того, что одно из них меньше k, а другое больше k ($1 \le k \le n$)?
- 2. Две одинаковые монеты радиуса r расположены внутри круга радиуса R, в который наудачу бросается точка. Определить вероятность того, что точка упадет на одну из монет, если известно, что монеты не перекрываются.
- 3. Три исследователя независимо один от другого производят измерения некоторой физической величины. Вероятность допустить ошибку для каждого из исследователей соответственно равна 0.1, 0.15, 0.2. Найти вероятность того, что хотя бы один из исследователей допустит ошибку.
- 4. Некоторое изделие выпускается двумя заводами, при этом объем продукции второго завода в k раз превосходит объем продукции первого. Доля брака у первого завода p_1 , у второго p_2 . Изделия, выпущенные заводами за одинаковый промежуток времени, пустили в продажу. Какова вероятность того, что некто приобрел изделие второго завода, если оно оказалось бракованным.

Контрольная работа 2

Вариант

- 1. В партии из 6 изделий имеется 4 стандартных. Наудачу отобраны 3 изделия. Построить ряд распределения числа стандартных деталей среди отобранных. Найти функцию распределения и числовые характеристики.
- 2. Функция распределения случайной величины X задана формулой

$$F(x, y) = A + B \cdot \operatorname{arctg} x$$
.

Найдите параметры A и B, а также плотность распределения вероятностей f(x).

3. Двумерная случайная величина имеет плотность

$$f(x,y) = \frac{A}{\pi^2(x^2+3)(x^2+1)}.$$

Найдите а) параметр A; b) функцию распределения F(x, y); c) вероятность попадания случайной точки в квадрат, ограниченный прямыми x = 0, y = 0, x = 1, y = 1.

Критерии оценивания результатов контрольной работы:

Отлично	Все задачи решены, аккуратно оформлены.
Хорошо	В менее чем двух задачах допущены незначительные ошибки.
Удовлетворительно	Решено не менее трех задач.
Неудовлетворительно	Решено не более двух задач.

20.2 Промежуточная аттестация

Перечень вопросов к экзамену

- 1. Вероятностные методы в науке и практике. Условия применимости вероятностных моделей. Особенности реализации системного подхода при использовании аппарата теории вероятностей.
- 2. Случайные события и операции над ними. Система аксиом Колмогорова. Вероятностное пространство и вероятностная модель. Вероятность и ее свойства. Примеры вероятностных пространств.
- 3. Классическое определение вероятности. Геометрическая и статистическая вероятность.
- 4. Теоремы сложения и умножения вероятностей. Вероятность сложных событий.
- 5. Условная вероятность. Независимость событий. Формула полной вероятности. Формула Байеса.
- 6. Схема независимых испытаний Бернулли. Наивероятнейшее число успехов. Предельные теоремы в схеме Бернулли: Пуассона, дифференциальная и интегральная теоремы Муавра-Лапласа. Производящая функция числа успехов.
- 7. Понятие случайной величины. Закон распределения случайной величины и его формы. Абсолютно непрерывные, дискретные, дискретно-непрерывные и сингулярные случайные величины.
- 8. Функция распределения и ее свойства.
- 9. Плотность распределения вероятностей и ее свойства.
- 10. Законы распределения дискретных случайных величин: биномиальный, геометрический, Пуассона.
- 11. Законы распределения непрерывных случайных величин: равномерный, нормальный, показательный.
- 12. Числовые характеристики случайных величин. Математическое ожидание и дисперсия. Моменты случайных величин. Мода и медиана.
- 13. Многомерные случайные величины. Многомерные функции распределения. Многомерная плотность вероятностей. Независимость случайных величин. Условная плотность вероятностей многомерных случайных величин.
- 14. Числовые характеристики многомерных случайных величин. Математическое ожидание и дисперсия случайного вектора. Корреляционный момент, коэффициент корреляции и корреляционная матрица.
- 15. Функции случайных величин. Функция распределения функции случайных величин. Плотность вероятностей суммы (формула свертки), разности, произведения, частного. Линейное преобразование нормальной случайной величины.
- 16. Характеристические функции скалярных и векторных случайных величин и их свойства. Теоремы обращения и единственности. Производящая функция и ее свойства.
- 17. Виды сходимости последовательностей случайных величин. Центральная предельная теорема (ЦПТ). Теоремы Муавра-Лапласа как частный случай ЦПТ. Примеры использования ЦПТ.
- 18. Неравенства Чебышева. Закон больших чисел: теоремы Чебышева, Хинчина, Маркова. Следствия закона больших чисел: теоремы Бернулли и Пуассона.

Промежуточная аттестация по дисциплине осуществляется с помощью следующих контрольно-измерительных материалов.

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЙ МАТЕРИАЛ №

1. Условная вероятность и ее свойства. Формула полной вероятности. Формула Байеса. Условные распределения.

Теоретический минимум:

- 1. Классическая вероятностная схема.
- 2. Цепь Маркова.
- 3. Независимость случайных величин.
- 4. Выражение плотности распределения функции через плотность распределения аргумента.
- 5. Свойства дисперсии.
- 6. Числовые характеристики равномерного распределения.
- 7. Функция регрессии.
- 8. Неравенство Чебышева.

Задача: Вероятность выигрыша в некоторой лотерее равна *0.3*. Вы купили 100 билетов. Какое количество выигрышей Вам гарантировано с вероятностью *0.9*?

Промежуточная аттестация проводится в форме письменного экзамена, на который отводится 90 минут. Затем работы проверяются преподавателем, и полученные оценки выставляются в ведомость и в зачетку. Если имеется необходимость в уточнении решения задач, или возникает спорная ситуация, то может быть проведено дополнительное собеседование.

Критерии оценивания результатов экзамена:

		1 /
	Отлично	Отличное владение теорией и решение задач не ниже хорошего уровня;
Отличн		или отличное решение задач и владение теорией не ниже хорошего
		уровня.
	Хорошо	Владение теорией не ниже хорошего уровня и решение задач не ниже
Хорошо		удовлетворительного уровня; или владение теорией не ниже удовле-
		творительного уровня и решение задач не ниже хорошего уровня.
Vпорпотрори:	влетворительно	Удовлетворительное владение теорией и удовлетворительное реше-
удовлетвори		ние задач.
Неудовлетворительно		Неудовлетворительное владение теорией или неудовлетворительное
		решение задач.