МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

теоретической физики

(Фролов М.В.)

02.07.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.03 – Электродинамика

Код и наименование дисциплины в соответствии с Учебным планом

2. Профиль подготовки/	-	
г. профиль подготовки/	-	
	" Augusta amartuas	an adan u unamuu "
	— Физика аптомног	го ядра и частиц "
3. Квалификация (степе	нь) выпускника:	бакалавр
4. Форма обучения: очна	эя	
5. <u>Кафедра, отвечающая за реа</u>	лизацию дисциплины	ı: 0802 – теоретической физики
 Составители програм 	MLI DODODE ADD	усанда Валапьаени
у. Ооставители програм	φ <i>HO</i>	санор валервевич
u de se u	4110	
К.фМ.Н. ученая степень	<u> </u>	
flegel@cs.vsu.ru	ученое звание физический	
e-mail	факультет	
теоретической физики	r	
кафедра		· · · · · · · · · · · · · · · · · · ·
7. Рекомендована: <u>НМС</u>	физического факуль	ьтета от 27.06.2018 г., протокол № 6
		ктуры, дата, номер протокола,
		
on	пметки о продлении в	вносятся вручную)
	1 Семестр(-ь	

9. Цели и задачи учебной дисциплины:

Изучить законы электромагнитных явлений, освоить математический аппарат классической электродинамики, приобрести навыки решения характерных задач электродинамики.

- **10. Место учебной дисциплины в структуре ООП:** Входит в модуль "Вариативная часть". Студент должен обладать знаниями по дисциплинам модулей «Физика», Б1.В.01 «Теоретическая механика» и «Математика».
- 11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Компетен	нция	Планируемые результаты обучения		
Код	Название			
OK-1;	владеть культурой мышления, способен к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения	знать: основные понятия и законы классической электродинамики вакуума и сплошных сред;		
OK-2;	уметь логически верно, аргументировано и ясно строить устную и письменную речь	уметь: использовать в профессиональной и научной деятельности математический аппарат классической электродинамики; применять полученные знания об электромагнитных явлениях для освоения		
ОПК-1;	способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования	профильных дисциплин и решения профессиональных задач; владеть (иметь навык(и)): методами решения характерных задач электродинамики.		
ПК-4	способностью использовать технические средства для измерения основных параметров объектов исследования, к подготовке данных для составления обзоров, отчетов и научных публикаций			

12. Объем дисциплины в зачетных единицах/часах (в соответствии с учебным планом) — 3 / 108.

Форма промежуточной аттестации (зачет/экзамен) - экзамен.

13. Виды учебной работы:

Вид учебной работы		Трудоемкость (часы)			
		_	По семестрам		
	,	Всего	5 сем.		
Ay,	диторные занятия	50	50		
в том числе:	лекции	34	34		
	практические	16	16		
	контроль	36	36		

Самостоятельная работа	22	22	
Форма промежуточной аттестации	экзамен	экзамен	
Итого:	108	108	

13.1. Содержание дисциплины

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины			
1	Основные уравнения электромагнитного поля в вакууме	Законы электромагнетизма как результат обобщения опытных данных. Система уравнений Максвелла для электромагнитного поля в вакууме. Энергия и импульс электромагнитного поля.			
2	Постоянное электрическое поле	Основные уравнения постоянного электрического поля. Поле на больших расстояниях от системы зарядов. Дипольный и квадрупольный моменты. Система зарядов в квазиоднородном внешнем поле.			
3	Постоянное магнитное поле	Уравнения постоянного магнитного поля. Закон Био– Савара–Лапласа. Магнитный момент. Магнитная энергия постоянных токов. Коэффициенты индуктивности. Токи в квазиоднородном магнитном поле. Силы в постоянном магнитном поле.			
4	Излучение и рассеяние электромагнитных волн	Уравнения для электромагнитных потенциалов. Электромагнитные волны. Плоские монохроматические волны. Поляризация волны. Запаздывающие потенциалы. Общая теория излучения. Дипольное излучение. Магнитно-дипольное и квадрупольное излучения. Торможение излучением. Спектральное разложение излучения. Рассеяние электромагнитных волн.			
5	Система уравнений Максвелла в средах	Уравнения электромагнитного поля в поляризующихся и намагничивающихся средах.			
6	Постоянные электрическое и магнитное поля в средах. Постоянный ток в средах	Электростатика проводников. Электростатика диэлектриков. Постоянный ток в проводящих средах. Постоянное магнитное поле в средах.			
7	Квазистационарные токи и поля	Квазистационарное приближение. Система линейных проводников. Скин-эффект.			
8	Электромагнитные волны в средах	Электромагнитные волны в диэлектриках в отсутствие дисперсии. Дисперсия диэлектрической проницаемости. Отражение и преломление. Распространение волн в неоднородной среде.			

13.2. Темы (разделы) дисциплины и виды занятий

_			
	Nº	Цаимонование вазполе	Риды зацитий (насор)
	IN≌	Наименование раздела	Виды занятий (часов)

п/п	дисциплины	Лекции	Практи- ческие	Лабора- торные	Самостоят. работа	Контроль самостоя- тельной работы	Всего
	Основные уравнения						
1	электромагнитного поля						
	в вакууме	4	2		2	4	12
2	Постоянное						
2	электрическое поле	4	3		4	5	16
3	Постоянное магнитное						
3	поле	4	3		4	5	16
4	Излучение и рассеяние						
4	электромагнитных волн	6	3		4	6	19
5	Система уравнений						
3	Максвелла в средах	4	1		2	4	11
	Постоянные						
6	электрическое и						
0	магнитное поля в средах.						
	Постоянный ток в средах	4	2		2	4	12
7	Квазистационарные токи		_				
<u> </u>	и поля	4	1		2	4	11
8	Электромагнитные волны	_					
O	в средах	4	1		2	4	11
	Итого:	34	16		22	36	108

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение практических заданий, тестов, заданий текущей аттестации и т.д.)

При освоении лекционного материала обучающимся необходимо понимать связь каждой лекции с предыдущими, ее место и роль в текущей главе; на занятиях рекомендуется задавать уточняющие вопросы преподавателю, домашние задания следует систематически выполнять.

15. Перечень основной и дополнительной литературы, ресурсов интернета, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
1	Алтунин К.К. Электродинамика, специальная теория относительности и электродинамика сплошных сред / К.К. Алтунин. — М.: Директ-Медиа, 2014. — 109 с. // «Университетская библиотека online» : электронно-библиотечная система. — URL : « https://biblioclub.lib.vsu.ru/index.php?page=book&id=240549&sr=1 »
2	Алексеев А.И. Сборник задач по классической электродинамике / А.И. Алексеев. — СПб.: Лань, 2008. — 320 с. // «Университетская библиотека online» : электроннобиблиотечная система. — URL : «http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=100»

б) дополнительная литература:

№ п/п	Источник

1	Бредов М.М. Классическая электродинамика / М.М. Бредов, В.В. Румянцев, И.Н. Топтыгин. — СПб.: Лань, 2003. — 398 с. // «Университетская библиотека online» : электронно-библиотечная система. — URL : «http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=606».
2	Ландау Л.Д. Теория поля / Л.Д. Ландау, Е.М. Лифшиц. – М.: Физматлит, 2003. – 530 с.
3	Ландау Л.Д. Электродинамика сплошных сред / Л.Д. Ландау, Е.М. Лифшиц. – М.: Физматлит, 2003. – 651 с.
4	Батыгин В.В. Сборник задач по электродинамике и специальной теории относительности [Электронный ресурс] : учеб. пособие / В. В. Батыгин, И. Н. Топтыгин .— Москва : Лань, 2010 .— 480 с. // «Университетская библиотека online» : электронно-библиотечная система. — URL : « http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=544»
5	Терлецкий Я.П. Электродинамика / Я.П. Терлецкий, Ю.П. Рыбаков. – М.: Высш. шк., 1990. – 352 с.
6	Запрягаев С.А. Электродинамика / С.А. Запрягаев. – Воронеж: Изд-во Воронеж. гос. ун-та, 2005. – 536 с.
7	Тамм И.Е. Основы теории электричества / И.Е. Тамм. – М.: Наука, 1976. – 620 с.
8	Мармо С.И. Лекции по электродинамике. Часть 1 / С.И. Мармо, А.В. Флегель, М.В. Фролов. — Воронеж: Издательский дом ВГУ, 2018.— 102 с .// «Университетская библиотека online» : электронно-библиотечная система. — URL : «http://www.lib.vsu.ru/elib/texts/method/vsu/m18-03.pdf».
9	Мармо С.И. Лекции по электродинамике. Часть 2 / С.И. Мармо, А.В. Флегель, М.В. Фролов. — Воронеж: Издательский дом ВГУ, 2018.— 114 с .// «Университетская библиотека online» : электронно-библиотечная система. — URL : « http://www.lib.vsu.ru/elib/texts/method/vsu/m18-04.pdf ».
10	Мармо С.И. Задачи по электродинамике. Часть 1 / С.И. Мармо, М.В. Фролов. – Воронеж: Издательско-полиграфический центр ВГУ, 2014. – 63 с .// «Университетская библиотека online» : электронно-библиотечная система. – URL : «http://www.lib.vsu.ru/elib/texts/method/vsu/m14-87.pdf».
11	Мармо С.И. Задачи по электродинамике. Часть 1 / С.И. Мармо, М.В. Фролов. – Воронеж: Издательский дом ВГУ, 2015. – 53с. // «Университетская библиотека online» : электронно-библиотечная система. – URL :«http://www.lib.vsu.ru/elib/texts/method/vsu/m15-113.pdf»

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет) *:

№ п/п	Ресурс
12	http://www.lib.vsu.ru/
13	https://biblioclub.lib.vsu.ru/
14	https://lanbook.lib.vsu.ru/

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

18. Материально-техническое обеспечение дисциплины:

(при использовании лабораторного оборудования указывать полный перечень, при большом количестве оборудования можно вынести данный раздел в приложение к рабочей программе)

Лекционная аудитория, доска, учебная литература, электронные средства презентации.

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание компетенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС* (средства оценивания)
ОК-1: владеть культурой мышления, способен к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения ОК-2: уметь логически верно, аргументировано и ясно строить устную и письменную речь	Знать: основные понятия и законы классической электродинамики вакуума и сплошных сред. Уметь: использовать в профессиональной и научной деятельности математический аппарат	Разделы 1-4 Разделы 5,6	Текущая аттестация №1 (контрольная работа) Текущая аттестация №2 (собеседование
ОПК-1: способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования ПК-4: способностью использовать технические средства для измерения основных параметров объектов исследования, к подготовке данных для составления обзоров, отчетов и научных публикаций	классической электродинамики; применять полученные знания об электромагнитных явлениях для освоения профильных дисциплин и решения профессиональных задач. Владеть: методами решения характерных задач электродинамики	Разделы 7,8	Практические задания
Промежуточная аттестация 1 (экзаме	н)		КИМ

^{*} В графе «ФОС» в обязательном порядке перечисляются оценочные средства текущей и промежуточной аттестаций.

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Студент должен усвоить понятия, законы и вычислительные методы классической электродинамики и иметь навыки их практического применения при решении конкретных задач.

Критерии оценок:

Отлично – полное знание теоретического материала, умение решать характерные задачи электродинамики.

Хорошо – знание основных результатов электродинамики, умение установить связи между ними и решать типовые задачи.

Удовлетворительно – знание основных понятий электродинамики и связей между ними, умение сформулировать и выразить математически основные законы электродинамики.

Неудовлетворительно – неправильная формулировка законов электродинамики, непонимание и неумение истолковать основные уравнения электродинамики.

Критерии оценивания компетенций	Уровень сформиро- ванности компетенций	Шкала оценок
Подробные и безошибочные ответы на основные и дополнительные вопросы, полное понимание и свободное владение материалом	Повышенный уровень	Отлично
Подробные ответы на поставленные вопросы с мелкими ошибками, незначительные пробелы в знании материала	Базовый уровень	Хорошо
Неудовлетворительные ответы на один из основных вопросов КИМа и некоторые дополнительные вопросы, неполное знание или понимание материала	Пороговый уровень	Удовлетвори- тельно
Плохое знание материала, неудовлетворительные ответы на вопросы КИМа и большинство дополнительных вопросов	_	Неудовлетвори- тельно

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к экзамену:

- 1. Законы электромагнетизма как следствие экспериментальных данных.
- 2. Система уравнений Максвелла для электромагнитного поля в вакууме.
- 3. Энергия электромагнитного поля.
- 4. Импульс электромагнитного поля.
- 5. Основные уравнения постоянного электрического поля.
- 6. Энергия электростатического поля.
- 7. Поле на больших расстояниях от системы зарядов. Дипольный и квадрупольный моменты.
- 8. Система зарядов в квазиоднородном внешнем поле.
- 9. Постоянное магнитное поле.
- 10. Магнитный момент.
- 11. Магнитная энергия постоянных токов. Коэффициенты самоиндукции и взаимной индукции.
- 12. Токи в квазиоднородном магнитном поле.
- 13. Уравнения для электромагнитных потенциалов.
- 14. Электромагнитные волны.
- 15. Плоские монохроматические волны.
- 16. Запаздывающие потенциалы.
- 17. Дипольное излучение.
- 18. Квадрупольное и магнитно-дипольное излучения.

- 19. Спектральное разложение излучения.
- 20. Торможение излучением.
- 21. Рассеяние электромагнитных волн.
- 22. Система уравнений Максвелла в средах.
- 23. Электростатика проводников.
- 24. Электростатика диэлектриков.
- 25. Постоянный ток в проводящих средах.
- 26. Квазистационарное электромагнитное поле. Скин-эффект.
- 27. Постоянное магнитное поле в средах
- 28. Электромагнитные волны в диэлектриках в отсутствие дисперсии
- 29. Дисперсия диэлектрической проницаемости.
- 30. Электромагнитные волны в диспергирующих средах.

19.3.2 Перечень практических заданий

- 1. В однородное электрическое поле напряженности Е внесли металлическую пластину. Плоскость пластины перпендикулярна направлению электрического поля. Чему равна поверхностная плотность зарядов на разных сторонах пластины?
- **2.** Точечный заряд q находится на расстоянии r от центра O незаряженного сферического проводящего слоя, внутренний и наружный радиус которого равны соответственно а и b. Найти потенциал в точке O, если r<a.
- **3.** Точечный заряд q находится на расстоянии I от безграничной проводящей плоскости. Определить поверхностную плотность зарядов, индуцированных на плоскости, как функцию расстояния r от перпендикуляра, опущенного из заряда q на плоскость.
- **4.** Тонкое проводящее кольцо радиуса R, имеющее заряд q, расположено параллельно проводящей безграничной плоскости на расстоянии I от нее. Найти 1) поверхностную плотность заряда, находящуюся в точке плоскости, расположенной симметрично относительно кольца; 2) потенциал электрического поля в центре кольца.
- **5.** Найти потенциал проводящей незаряженной сферы, вне которой на расстоянии I от ее центра находится точечный заряд q.
- **6.** Между пластинами накоротко замкнутого плоского конденсатора находится металлическая пластина с зарядом q. Пластину переместили на расстояние I. Какой заряд прошел при этом по закорачивающему проводнику? Расстояние между пластинами конденсатора d.
- **7.** Определить поле вокруг проводящего незаряженного шара радиусом R, находящегося во внешнем однородном электрическом поле **E**.
- **8.** Пластинка из диэлектрика помещена в однородное электрическое поле так, что её нормаль составляет угол α с напряженностью электрического поля Е. Найти напряженность поля внутри пластины.
- **9.** Точечный заряд q находится на плоскости, отделяющей вакуум от безграничного однородного диэлектрика. Найти модуль векторов **D** и **E** во всем пространстве.
- **10.** Показать, что в однородном <u>диэектрике</u>, внутри которого нет сторонних зарядов, объемная плотность связанных зарядов равна нулю.

19.3.4 Тестовые задания

19.3.4 Перечень заданий для контрольных работ

20 Две пересекающиеся под прямым углом бесконечные плоскости делят пространство на четыре области. Чему равна напряженность поля в этих областях, если поверхностная плотность зарядов плоскостей σ?

- 21 В бесконечной равномерно заряженной с поверхностной плотностью о плоскости вырезано круглое отверстие радиусом R. Определить напряженность электрического поля на оси, перпендикулярной плоскости и проходящей через центр отверстия.
- **22** Верхняя половина сферы радиусом R с центром в начале координат равномерно заряжена с поверхностной плотностью σ, нижняя --- с поверхностной плотностью σ. Найти дипольный момент **d** сферы.
- 23 Два коаксиальных равномерно заряженных тонких кольца с радиусами а и b (a>b) имеют заряды q и -q. Найти дипольный и квадрупольный моменты системы и потенциал φ на оси системы.
- **24** В цилиндре радиусом R_1 параллельно его оси течет ток с объемной плотностью j_1 = const₁. В цилиндрическом слое, охватывающем цилиндр R_1 , с внешним радиусом R_2 протекает постоянный ток j_2 =const₂ в противоположном направлении. При каком отношении j_2/j_1 поле вне проводника равно нулю?
- 25 Ток J циркулирует в контуре, имеющем форму равнобедренной трапеции. Отношение оснований трапеции η. Найти магнитную индукцию В в точке A, в которой пересекаются продолжения боковых сторон. Меньшее основание трапеции равно I, расстояние от A до меньшего основания равно b (достаточно выразить В через однократный интеграл).
- **26** По проволоке, согнутой в виде равностороннего треугольника со стороной а, пропускается ток силы J. Найти векторный потенциал и магнитную индукцию на большом расстоянии от системы.
- **27** Шар радиуса R, заряженный с объемной плотностью $\rho = \beta r^2$ вращается вокруг своего диаметра с постоянной угловой скоростью ω . Найти магнитную индукцию в центре шара.
- 28 Частица с массой m и зарядом е движется в однородном магнитном поле **B** по окружности радиусом R. Найти энергию, теряемую на дипольное излучение за один оборот.
- 29 Прямоугольная рамка с постоянным линейным током Ј вращается вокруг своей диагонали с постоянной угловой скоростью ω. Площадь рамки равна S Найти интенсивность dl излучения в телесный угол dΩ в среднем по времени за период вращения рамки.
- **30** Электрон влетает в плоский конденсатор и через некоторое время покидает его в той же точке. Напряженность **E** поля в конденсаторе однородна и постоянна, скорость электрона при влете равна \mathbf{v} . Найти спектральное распределение полной энергии $\mathrm{d} \mathcal{E}_{\omega}$ дипольного излучения электрона.

19.3.5 Темы курсовых работ

19.3.6 Темы рефератов

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме(ах): устного опроса (индивидуальный опрос); письменных работ (контрольные);. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и практическое задание, позволяющее оценить степень умения решать практические задачи. Критерии оценивания приведены выше.