МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ Заведующий кафедрой теоретической физики

(Фролов М.В.)

02.07.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.Б.07.03 — Квантовая теория Код и наименование дисциплины в соответствии с учебным планом

1. Код и наименование направления подготовки/специальности: 03.03.02 – Физика						
2. Профиль подготовки/специализация: <u>"Ядерная и медицинская физика", "Физика</u>						
лазерных и спектральных	технологий", "Физика тв	ердого тела"				
3. Квалификация (степе	нь) выпускника: <u>бакал</u>	авр				
4. Форма обучения:	очная (дневная <u>)</u>	•				
5. Кафедра, отвечающа	я за реализацию дисц	иплины: <u>0802 – теоретической</u>				
физики_						
6. Составители програм	имы Корнев Алексей Ста Фио	ниславович				
д.фм.н.	доцент					
ученая степень	ученое звание					
a-kornev@yandex.ru	физический					
e-mail	факультет					
теоретической физики						
		na om 27.06.2018 г. протокол № 6 уры, дата, номер протокола,				
	отметки о продлении внос	сятся вручную)				
8. Учебный год: <u>2020</u> –20	021, 2021-2022	Семестр(ы): <u>6–7</u>				

9. Цели и задачи учебной дисциплины:

Цель дисциплины – дать студентам глубокое понимание закономерностей микромира, научить применять вычислительные методы квантовой теории для решения различных прикладных задач. Студент должен овладеть математическим аппаратом нерелятивистской квантовой теории, приобрести навыки его практического применения и на этой основе получать ясное представление о физической природе квантовых явлений, иметь понятие о релятивистской квантовой механике и четкое представление о границах применимости квантовых законов и используемых вычислительных методов. Он должен понимать, что квантовая механика есть научная основа современных нанотехнологий.

10. Место учебной дисциплины в структуре ООП: Дисциплина входит в модуль «Теоретическая физика» базовой части Б1. Курс знакомит с современными теоретическими методами описания свойств квантовых систем и теоретическими подходами к исследованию в них различных динамических процессов. Студент должен обладать знаниями по дисциплинам модулей «Общая физика», «Атомная и ядерная физика», «Математика», а также по дисциплинам «Теоретическая механика» и «Электродинамика») из модуля «Теоретическая физика», владеть основными математическими приемами и методами.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Компетенция		Планируемые результаты обучения	
Код Название			
ОПК-1	способность использовать в профессиональной деятельности базовые естественнонаучные	знать: основные положения и методы квантовой механики;	
ОПК-3	знания, включая знания о предмете и объектах изучения, методах исследования, современных концепциях, достижениях и ограничениях естественных наук способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач	уметь: использовать в профессиональной деятельности знания о свойствах квантовых объектов и методах их исследования, применять полученные знания для освоения профильных дисциплин и решения профессиональных задач; владеть (иметь навык(и)): практическими методами исследования квантовых систем и применять их на практике при решении профессиональных задач	

12. Объем дисциплины в зачетных единицах/часах (в соответствии с учебным планом) — 7 / 252.

Форма промежуточной аттестации(зачет/экзамен) зачет, экзамен.

13. Виды учебной работы:

		Трудоемкость			
Вид учебной работы			По семестрам		
	Всего	4	5		
Аудиторные занятия	132	64	68		
в том числе: лекции	66	32	34		
практические	66	32	34		
лабораторные					
Самостоятельная работа	84	44	40		
Контроль	36		36		
Форма промежуточной аттестации	зачет/экзамен	зачет	экзамен		
Итого:	252	108	144		

13.1. Содержание дисциплины

п/п	Наименование	Cononwalue noonen nuulun nuulu
	раздела дисциплины	Содержание раздела дисциплины
4.4	T	1. Лекции
1.1	Введение. Волновая функция	Основы квантовой теории. Основные трудности классической теории. Краткий очерк истории становления квантовой теории. Квантовые состояния. Волновая функция. Вероятностная интерпретация. Принцип суперпозиции. Волновой пакет.
1.2	Операторы физических величин и их свойства	Средние значения координат и импульсов. Алгебра операторов. Собственные значения и собственные функции операторов. Свойства собственных значений и собственных функций линейных эрмитовых операторов. Ортогональность и нормировка собственных функций оператора с дискретным спектром. Нормировка собственных функций оператора с непрерывным спектром. Условие совместного измерения различных механических величин. Соотношение неопределенностей.
1.3	Уравнение Шредингера	Постулирование уравнения Шредингера. Стационарное уравнение Шредингера. Уравнение непрерывности.
1.4	Изменение состояний со временем	Стационарные состояния. Свойства стационарных состояний. Дифференцирование операторов по времени. Квантовые скобки Пуассона. Интегралы движения. Связь интегралов движения с симметрией задачи. Теоремы Эренфеста.
1.5	Одномерные задачи	1-мерные задачи. Свойства финитного 1-мерного движения. Линейный гармонический осциллятор, спектр энергий, волновые функции стационарных состояний. Сравнение классического и квантового решений для осциллятора. 1-мерное движение в однородном поле.
1.6	Движение в центральном поле	Общая теория движения в центральном поле. Собственные функции и собственные значения операторов квадрата углового момента и его проекции на данное направление. Разделение переменных в центральном поле. Радиальное уравнение Шредингера. Общие свойства решения. Анализ условий падения частицы на центр. Метод решения задачи двух тел с центральным взаимодействием. Атом водорода. Решение радиального уравнения. Энергетический спектр. Движение в кулоновском поле в случае непрерывного спектра. Распределение электронной плотности в атоме водорода.
1.7	Теория представлений	Теория представлений. Координатное, импульсное и энергетическое представления для волновой функции. Теория представлений для операторов. Матричная формулировка квантовой механики. Описание временной эволюции системы в картине Гейзенберга. Дираковский формализм.
1.8	Квазиклассическое приближение	Квазиклассическое решение уравнения Шредингера. Метод ВКБ. Формула квантования Бора–Зоммерфельда. Прохождение микрочастиц сквозь потенциальный барьер в квазиклассическом приближении.
1.9	Приближенное решение стационарных задач	Стационарная теория возмущений для невырожденных уровней. Условия применимости. Теория возмущений для двух близких уровней. Теория возмущений при наличии вырождения. Вариационные методы: метод Шредингера и метод Ритца.
1.10	Теория квантовых переходов	Теория квантовых переходов для возмущений, действующих в течение конечного промежутка времени. Теория квантовых переходов для гармонических возмущений. "Золотое" правило Ферми.
1.11	Нерелятивистская теория излучения	Гамильтониан заряженной микрочастицы в электромагнитном поле. Случай слабого поля. Монохроматическая волна. Поглощение и вынужденное электромагнитное излучение света атомами. Спонтанное излучение. Длинноволновое приближение. Правила отбора для электрического дипольного излучения. Время жизни атомов.
1.12	Квантовая теория рассеяния	Постановка задачи в теории рассеяния. Уравнение Шредингера в интегральной форме. Функция Грина для свободного движения.

1.13	Нерелятивистская теория спина электрона	Спиновый момент электрона. Матричная форма операторов. Матрицы Паули. Волновые функции спиновых состояний. Спиновая переменная. Спинор. Движение заряженной частицы в магнитном поле. Уравнение Паули. Эффект Зеемана.	
1.14	Теория многих частиц	Уравнение Паули. Оффект Зеемана. Уравнение Шредингера для системы тождественных частиц. Симметрия волновой функции. Связь со спином. Принцип Паули. Метод Хартри. Теория атома гелия. Основное состояние. Возбужденные состояния. Кулоновское и обменное кулоновское взаимодействие. Триплетный и синглетный гелий.	
1.15	Релятивистская квантовая теория	Уравнение Клейна—Гордона для свободной частицы. Достоинство (античастицы) и недостаток (отсутствие спина). Уравнение Дирака. Матрицы Дирака. Биспиноры. Свободное движение. Спин в теории Дирака. Спиральность. Предельный переход к уравнению Паули.	
	T	2. Практические занятия	
2.1	Введение. Волновая функция	Квантовые состояния. Волновая функция. Вероятностная интерпретация. Нормировка. Принцип суперпозиции. Волновой пакет.	
2.2	Операторы физических величин и их свойства	Средние значения координат и импульсов. Алгебра операторов. Собственные значения и собственные функции операторов. Свойства собственных значений и собственных функций линейных эрмитовых операторов. Ортогональность и нормировка собственных функций оператора с дискретным спектром. Нормировка собственных функций оператора с непрерывным спектром. Условие совместного измерения различных механических величин. Соотношение неопределенностей.	
2.3	Уравнение Шредингера	Временное уравнение Шредингера. Стационарное уравнение Шредингера. Уравнение непрерывности.	
2.4	Изменение состояний со временем	Стационарные состояния. Свойства стационарных состояний. Дифференцирование операторов по времени. Квантовые скобки Пуассона. Интегралы движения. Связь интегралов движения с симметрией задачи. Теоремы Эренфеста.	
2.5	Одномерные задачи	1-мерные задачи. Свойства финитного 1-мерного движения. Прямоугольная потенциальная яма. Линейный гармонический осциллятор, спектр энергий, волновые функции стационарных состояний. Сравнение классического и квантового решений для осциллятора.	
2.6	Движение в центральном поле	Общая теория движения в центральном поле. Собственные функции и собственные значения операторов квадрата углового момента и его проекции на данное направление. Разделение переменных в центральном поле. Радиальное уравнение Шредингера. Атом водорода. Решение радиального уравнения. Энергетический спектр. Распределение электронной плотности в атоме водорода. Магнитный момент в атоме водорода.	
2.7	Теория представлений	Теория представлений. Координатное, импульсное и энергетическое представления для волновой функции. Теория представлений для операторов. Дираковский формализм.	
2.8	Квазиклассическое приближение	Квазиклассическое решение уравнения Шредингера. Метод ВКБ. Формула квантования Бора–Зоммерфельда. Прохождение микрочастиц сквозь потенциальный барьер в квазиклассическом приближении.	
2.9	Приближенное решение стационарных задач	Стационарная теория возмущений для невырожденных уровней. Теория возмущений для двух близких уровней. Теория возмущений при наличии вырождения. Вариационный метод Ритца.	
2.10	Теория квантовых переходов	Теория квантовых переходов для возмущений, действующих течение конечного промежутка времени. Теория квантовы переходов для гармонических возмущений. "Золотое" правил Ферми.	
2.11	Нерелятивистская теория излучения	Поглощение и вынужденное электромагнитное излучение света	
2.12	Квантовая теория рассеяния	Постановка задачи в теории рассеяния. Уравнение Шредингера в интегральной форме. Функция Грина для свободного движения.	

2.13	Нерелятивистская	Спиновый момент электрона. Матричная форма операторов.			
	теория спина	Матрицы Паули. Волновые функции спиновых состояний. Спиновая			
	электрона	переменная. Спинор.			
2.14		Теория атома гелия. Основное состояние. Возбужденные			
	Теория многих частиц	состояния. Кулоновское и обменное кулоновское взаимодействие. Триплетный и синглетный гелий.			
2.15	Релятивистская квантовая теория	Уравнение Клейна–Гордона для свободной частицы. Уравнение Дирака. Матрицы Дирака. Биспиноры. Свободное движение. Спин в теории Дирака.			
	3. Лабораторные работы				

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы	Виды занятий (часов)					
п/п	(раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего	
1	Введение. Волновая функция	2	2		4	8	
2	Операторы физических величин и их свойства	6	8		10	24	
3	Уравнение Шредингера	2	2		4	8	
4	Изменение состояний со временем	6	6		8	20	
5	Одномерные задачи	4	4		4	12	
6	Движение в центральном поле	8	10		10	28	
7	Теория представлений	6	6		6	18	
8	Квазиклассическое приближение	4	4		4	12	
9	Приближенное решение стационарных	4	6		6	16	
10	Задач	2	6 2		4	8	
11	Теория квантовых переходов Нерелятивистская теория излучения	4	4		6	14	
12	Квантовая теория рассеяния	4	2		4	10	
13	Нерелятивистская теория спина электрона	4	2		4	10	
14	Теория многих частиц	4	4		4	12	
15	Релятивистская квантовая теория	6	4		6	16	
	Итого:	66	66		84	216	

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение практических заданий, тестов, заданий текущей аттестации и т.д.)

Необходимо после каждой лекции по ее теме разбирать и осваивать лекционный материал, для его лучшего понимания читать рекомендованную основную и дополнительную литературу, готовиться к лабораторному занятию, разбирая соответствующий теоретический материал, систематически выполнять домашние задания, не пропускать текущие тестирования по пройденному теоретическому и практическому материалу.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

a) ochobne	зя литература.				
№ п/п	Источник				
1	Давыдов, А.С. Квантовая механика / А.С. Давыдов. — СПб: БХВ–Петербург,				
,	2014. — 703 c.				
	Ландау Л.Д. Теоретическая физика. Т. III: Квантовая механика				
2	(нерелятивистская теория) / Л.Д. Ландау, Е.М. Лифшиц. — М.: Физматлит,				
	2015. — 800 c.				
	Копытин, Игорь Васильевич. Квантовая теория : курс лекций. Ч.1 / И.В. Копытин				
	, А.С. Корнев, Н.Л. Манаков ; Воронеж. гос. ун-т .— 2-е изд. — Воронеж : ЛОП				
3	ВГУ, 2007 .— 111 с // «Университетская библиотека online»: электронно-				
	библиотечная система. – URL :				
	http://www.lib.vsu.ru/elib/texts/method/vsu/may07111.pdf				

б) дополнительная литература:

дополнительная литература:				
№ п/п	Источник			
4	Копытин, И.В. Квантовая теория: курс лекций для вузов ч.2/ А.С.Корнев, Н.Л.Манаков, М.В.Фролов — издательско-полиграфический центр ВГУ, 2008 — 88 с. http://www.lib.vsu.ru/elib/texts/method/vsu/m08-189.pdf			
5	Балашов, В.В. Курс квантовой механики : Учебное пособие для студ. физ.фак. Ч. 1 / В.В. Балашов, В.К. Долинов .— М. : Изд-во Моск. ун-та, 1974 .— 379 с.			
6	Балашов, В.В. Курс квантовой механики : Учебное пособие для студ. физ.фак. Ч. 2 / В.В. Балашов, В.К. Долинов .— М. : Изд-во Моск. ун-та, 1978 .— 196 с.			
7	Соколов А.А. Квантовая механика / А.А. Соколов, И.М. Тернов, В.Ч. Жуковский .— М. : Наука : Физматлит, 1979 .— 528 с.			
8	Ландау, Л.Д. Теоретическая физика. Т. III: Квантовая механика (нерелятивистская теория) / Л.Д. Ландау, Е.М. Лифшиц. — М.: Физматлит, 2001. — 803 с.			
9	Блохинцев, Д.И. Основы квантовой механики / Д.И. Блохинцев. — СПб: Лань, 2004. — 664 с.			
10	Галицкий, В.М. Задачи по квантовой механике : учебное пособие для студ. физ. специальностей вузов : в 2 ч. / В.М. Галицкий, Б.М. Карнаков, В.И. Коган .— М. : Едиториал УРСС, 2001.			

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Pecypc			
11	http://www.lib.vsu.ru/elib/texts/method/vsu/m14-154.pdf			
12	http://www.lib.vsu.ru/elib/texts/method/vsu/m09-11.pdf			
13	http://www.lib.vsu.ru/elib/texts/method/vsu/m08-121.pdf			

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1	Флюгге, З. Задачи по квантовой механике : в 2 ч. / З. Флюгге ; пер. с англ. Б.А.
	Лысова; под ред. А.А. Соколова .— Череповец : Меркурий-Пресс, 2000.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

Система компьютерной алгебры Махіта

18. Материально-техническое обеспечение дисциплины:

(при использовании лабораторного оборудования указывать полный перечень, при большом количестве оборудования можно вынести данный раздел в приложение к рабочей программе)

Лекционная аудитория, доска, учебная литература, электронные средства для представления презентаций.

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание компетенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС* (средства оценивания)
ОПК-1 способность	Знать: основные	Разделы 1–6	Пакет КИМ № 1
использовать в профессиональной	положения и методы квантовой механики	Разделы 7–15	Пакет КИМ № 2
деятельности базовые естественнонаучные знания,	Уметь : использовать в профессиональной	Разделы 1–4	Контрольная работа № 1
включая знания о предмете и объектах изучения, методах	деятельности знания о свойствах квантовых	Разделы 5, 6	Контрольная работа № 2
исследования, современных концепциях, достижениях и	объектов и методах их исследования, применять	Разделы 7,8	Контрольная работа № 3
ограничениях естественных наук ОПК-3 способность	полученные знания для освоения профильных дисциплин и решения профессиональных задач	Разделы 9–15	Контрольная работа № 4
использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач	Владеть: практическими методами исследования квантовых систем и применять их на практике при решении профессиональных задач	1–15	Курсовая работа
Промежуточная аттестация			Пакет КИМ № 1 Пакет КИМ № 2

^{*} В графе «ФОС» в обязательном порядке перечисляются оценочные средства текущей и промежуточной аттестаций.

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Овладение основными понятиями и постулатами квантовой теории. Понимание отличия квантового описания движения от классического: как в физических концепциях, так и в математическом описании. Умение решать типовые задачи и применять их результаты для описания свойств реальных квантовых систем и объяснения важнейших эффектов.

Для оценивания результатов обучения на экзамене (зачете с оценкой) используется 4-балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Для оценивания результатов обучения на зачете используется – зачтено, не зачтено Соотношение показателей, критериев и шкалы оценивания результатов обучения.

	Уровень	
Критерии оценивания компетенций	сформирован	Шкала оценок
	ности	
	компетенций	
Подробные и безошибочные ответы на основные и	Повышенный	Отлично
дополнительные вопросы, полное понимание и свободное	уровень	
владение материалом	,,	
Подробные ответы на поставленные вопросы с мелкими	Базовый	Хорошо
ошибками, незначительные пробелы в знании материала	уровень	1 10 10 10 10
Неудовлетворительные ответы на один из основных вопросов	Пороговый	Удовлетвори-
	•	•
КИМа и некоторые дополнительные вопросы, неполное знание	уровень	тельно
или понимание материала		
Плохое знание материала, неудовлетворительные ответы на	_	Неудовлетвори-
вопросы КИМа и большинство дополнительных вопросов		тельно

Критерии оценивания компетенций	Уровень сформирован	Шкала оценок
	ности компетенций	
Обучающийся выполнил 70% заданий или более	Пороговый	Зачтено
	уровень	
Обучающийся выполнил менее 70% заданий	_	Не зачтено

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к зачету:

- Математическое изображение квантового состояния микрообъекта.
- Физический смысл волновой функции.
- Волновая функция системы N частиц задана: $\Psi(\vec{r}_1,\vec{r}_2,...,\vec{r}_N;t)$. Найти распределение вероятности обнаружения i-й частицы.
- Стандартные условия, которым должна удовлетворять волновая функция.
- Нормировка волновых функций состояний финитного движения.
- Граничное условие, налагаемое на волновые функции состояний финитного движения.
- Принцип суперпозиции состояний.
- Математическое изображение физических величин.
- Формула среднего значения физической величины в данном состоянии.
- Почему оператор физической величины должен быть линейным?
- Почему оператор физической величины должен быть эрмитовым?
- Объяснить физический смысл высказывания: "Величина F в данном состоянии имеет определенное значение".
- Объяснить физический смысл высказывания: "Величина F в данном состоянии не имеет определенного значения".
- Математическая формулировка определенного значекния величины F в данном состоянии.
- Какие значения величины F показывает эксперимент?
- В каких состояниях среднеквадратичное отклонение величины F равно нулю?
- Как найти определенные значения величины F, зная вид ее оператора?
- Чему равно среднеквадратичное отклонение величины F в состоянии с определенным значением F ?
- Свойства собственных функций и собственных значений линейных эрмитовых операторов.
- Разложение волновой функции по базису линейного эрмитова оператора. Физический смысл коэффициентов разложения. Физический смысл ортогональности базисных функций.

- Вырождение. Кратность вырождения. Привести 5 примеров для случая вырождения собственных значений оператора.
- Инфинитное движение. Нормировка волновых функций непрерывного спектра.
- Разложение заданной волновой функции по базису оператора. Физический смысл коэффициентов разложения для операторов с дискретным и непрерывным спектром.
- Дать математическое объяснение высказыванию: "Величины L и M измеримы совместно".
- Сформулировать необходимое и достаточное условие совместной измеримости двух физических величин. Привести по 10 примеров пар измеримых и неизмеримых совместно величин.
- Соотношение неопределенностей. Его физический смысл.
- В чем состоит основное отличие соотношений неопределенностей для пар совместно измеримых и неизмеримых физических величин? Привести примеры.
- Нестационарное уравнение Шредингера. Физический смысл.
- Дать определение стационарных состояний.
- Стационарное уравнение Шредингера. *(Дополнительно его акустическая аналогия)*
- Определение основного состояния. Его свойство.
- Зависимость волновой функции от времени в стационарных состояниях.
- Свойства стационарных состояний.
- При каком условии стационарные состояния могут быть реализованы?
- Правила сшивания волновых функций в точках разрыва потенциальной энергии (1-мерный случай).
- Свойства 1-мерного финитного движения.
- Уравнение непрерывности для плотности вероятности. Связь плотности потока вероятности с волновой функцией.
- Какое состояние изображается плоской волной?
- Определение полной производной оператора физической величины по времени.
- Уравнение движение для оператора физической величины в форме Гейзенберга.
 Классическая аналогия. Свойства полной производной оператора по времени.
- Теоремы Эренфеста. Классические аналогии.
- Определение интеграла движения.
- При каком физическом условии величина, не зависящая явно от времени, будет интегралом движения? Как это условие формулируется математически?
- При каком физическом условии полная энергия будет интегралом движения?
- При каком физическом условии импульс будет интегралом движения?
- При каком физическом условии проекция момента импульса на выделенное направление будет интегралом движения?
- При каком физическом условии квадрат момента импульса будет интегралом движения?
- Операция инверсии. Физическая сущность. Инверсия в декартовых и сферических координатах.
- Физическая величина, соответствующая оператору инверсии. Наблюдаемые значения.
- Свойства волновых функций состояний с определенной четностью.
- При каком физическом условии четность будет интегралом движения?
- С какими величинами (импульс, кинетическая энергия, потенциальная энергия, проекция момента количества движения, квадрат момента количества движения) четность измерима совместно?
- Осцилляторный потенциал. Примеры квантовых осцилляторов.
- Энергетический спектр 1-мерного линейного гармонического осциллятора. Свойство ортонормировки волновых функций стационарных состояний осциллятора.
- Нулевые колебания осциллятора. Их физическая причина. Энергия нулевых колебаний.
- Определение центрального поля. Интегралы движения.
- Определенные значения квадрата орбитального момента и проекции. Соответствующие им волновые функции. Кратность вырождения.
- В каких состояниях переменные в стационарном уравнении Шредингера с центральным потенциалом полностью разделяются?

- Радиальное уравнение Шредингера. Граничное условие.
- Классификация стационарных состояний в центральном поле. Спектроскопические символы.
- Метод решения задачи двух тел с центральным взаимодействием.
- Эффективный потенциал электрона в кулоновском поле притяжения.
- Квантовые числа, характеризующие состояния атома водорода. Диапазоны их изменения.
 Какой физической величине соответствует каждое квантовое число?
- Классификация водородных термов. Основное состояние атома водорода.
- Энергетический спектр атома водорода. Кратность вырождения. Условие ортонормировки волновых функций.
- Магнитный момент в стационарных состояниях атома водорода.

Перечень вопросов к экзамену:

- 1. Квантовые состояния. Волновые функции. Принцип суперпозиции состояний.
- 2. Среднеквадратичное отклонение (дисперсия) физической величины.
- 3. Собственные значения и собственные функции линейных эрмитовых операторов.
- 4. Условия совместной измеримости нескольких физических величин.
- 5. Соотношение неопределенностей.
- 6. Свойства собственных функций оператора с непрерывным спектром.
- 7. Уравнение Шредингера (временно́е, стационарное). Стационарные состояния. Их свойства.
- 8. Уравнение непрерывности. Плотность потока вероятности.
- 9. Дифференцирование операторов по времени. Интегралы состояния.
- 10. Квантовая теория линейного гармонического осциллятора.
- 11. Момент количества движения (орбитальный момент).
- 12. Разделение переменных в уравнении Шрёдингера в центральном поле. Спектроскопические символы.
- 13. Задача двух тел с центральным взаимодействием.
- 14. Теория атома водорода.
- 15. Токи в атомах. Магнетон Бора.
- 16. Импульсное и энергетическое представление волновых функций.
- 17. Импульсное и энергетическое представление операторов.
- 18. Уравнение Шредингера в импульсном и энергетическом представлениях.
- 19. Собственные функции и собственные значения операторов в матричном виде.
- 20. Матричная форма оператора полной производной физической величины по времени.
- 21. Квазиклассическое приближение. Условия его применимости.
- 22. Квазиклассическое решение 1-мерного уравнения Шредингера (метод Вентцеля– Крамерса–Бриллюэна).
- 23. Правило квантования Бора-Зоммерфельда.
- 24. Вариационный метод решения уравнения Шредингера (метод Ритца).
- 25. Вариационный принцип в квантовой теории. Вариационный вывод стационарного уравнения Шредингера.
- 26. Стационарная теория возмущений для изолированного уровня.
- 27. Стационарная теория возмущений при наличии вырождения.
- 28. Нестационарная теория возмущений (теория квантовых переходов).
- 29. Периодическое и постоянное возмущения («Золотое» правило Ферми).
- 30. Рассеяние как квантовый переход в непрерывном спектре в 1-ом порядке теории возмущений. Формула Борна.
- 31. Гамильтониан взаимодействия квантовой системы с электромагнитным полем. Вынужденное поглощение и излучение света.

- 32. Длинноволновое приближение. Дипольное излучение.
- 33. Спонтанное излучение возбужденных квантовых систем.
- 34. Амплитуда и сечение рассеяния. Интегральное уравнение Шредингера для задачи рассеяния.
- 35. Первое борновское приближение. Условия его применимости.
- 36. Сечение рассеяния на кулоновском потенциале.
- 37. Нерелятивистская теория спина. Оператор спина. Спиновые функции.
- 38. Уравнение Паули.
- 39. Расщепление уровней в магнитном поле. Эффект Зеемана.
- 40. Принцип тождественности частиц. Симметризация и антисимметризация волновых функций. Принцип Паули.
- 41. Теория основного состояния атома гелия.
- 42. Возбужденные состояния атома гелия. Орто- и парагелий.
- 43. Метод самосогласованного поля. Уравнения Хартри.
- 44. Уравнение Клейна-Гордона.
- 45. Уравнение Дирака для релятивистского электрона.
- 46. Решение уравнения Дирака для свободного электрона. Спиральность.
- 47. Полный момент импульса и спин электрона в теории Дирака.
- 48. Вывод уравнения Паули из уравнения Дирака.

19.3.2 Перечень практических заданий

19.3.3 Тестовые задания

Пакет КИМ № 1

Контрольно-измерительный материал № 1

- 1. Нормировка волновой функции финитного движения.
- 2. Условие совместной измеримости двух физических величин.
- 3. Какие величины сохраняются в поле сферической симметрии?
- 4. Гамильтониан одномерного линейного гармонического осциллятора.
- 5. Магнитный момент заряженной бесспиновой частицы в центральном поле.

Контрольно-измерительный материал № 2

- 1. Вероятностный смысл волновой функции.
- 2. Соотношение неопределенностей для физических величин.
- 3. Условие сохранения пространственной четности.
- 4. Спектр одномерного линейного гармонического осциллятора.
- 5. Радиальное уравнение Шредингера с граничными условиями.

Контрольно-измерительный материал № 3

- 1. Нормировка собственных функций оператора с непрерывным спектром.
- 2. Временное уравнение Шредингера.
- 3. Какие значения может принимать проекция орбитального момента?
- 4. Что такое туннельный эффект?
- 5. Гамильтониан водородоподобного иона.

Контрольно-измерительный материал № 4

- 1. Нормировка волновой функции финитного движения.
- 2. Условие совместной измеримости двух физических величин.
- 3. Какие величины сохраняются в поле сферической симметрии?
- 4. Гамильтониан одномерного линейного гармонического осциллятора.
- 5. Магнитный момент заряженной бесспиновой частицы в центральном поле.

Пакет КИМ № 2

Контрольно-измерительный материал № 1

- 1. Среднеквадратичное отклонение (дисперсия) физической величины. Собственные значения и собственные функции линейных эрмитовых операторов.
- 2. Уравнение Дирака для релятивистского электрона.

Контрольно-измерительный материал № 2

- 1. Свойства собственных функций оператора с непрерывным спектром.
- 2. Оператор спина. Спиновые функции.

19.3.4 Перечень заданий для контрольных работ

Контрольная работа № 1

1. Какие из перечисленных функций соответствуют одинаковым состояниям? (2)

$$\alpha e^{-\alpha x^2 + \beta}$$
, $e^{\alpha x} e^{-\alpha(x+1)^2}$, $e^{\ln \beta + \alpha(x^2-1)}$

2. Раскрыть скобки (4):

$$(\hat{L}_z - \hat{p}_z)^2$$
, $(\hat{p}_x^2 - x)^2$

3. Показать, что функция $\,\phi = A {
m e}^{-x^2/2}\,$ является собственной функцией

оператора
$$\hat{R} = -\frac{d^2}{dx^2} + x^2$$
 и найти собственное значение, которому она удовлетворяет. (3)

- 4. Записать соотношение неопределенностей для следующих физических величин: (p_x, L_z) . (2)
- 5. Вычислить среднее значение p_x в произвольном стационарном состоянии частицы массой m в яме шириной a с двумя бесконечно высокими стенками. Привести явный вид волновой функции. (5)
- 6. Есть ли общие собственные функции у операторов (\hat{y}, \hat{L}_z) ? (2)
- 7. Какие значения момента L_z и с какой вероятностью будут наблюдаться на эксперименте, если состояние системы описывается волновой функцией

$$\Psi(\varphi) = a(\cos^2 2\varphi + \sin \varphi)$$
? Найти $< L_z > u < (\Delta L_z)^2 > .$ (8)

- 8. Запишите гамильтониан атома водорода. (2)
- 9. Может ли состояние, описываемое волновой функцией

$$\psi(\xi,t) = \varphi(\xi)e^{2i(E+i\Gamma)t}$$
, быть стационарным? (2)

Контрольная работа № 2

1(12). Частица, имеющая массу m, движется в поле

$$V(x) = \begin{cases} +\infty, & x \le 0, \\ \frac{1}{2}m\omega^2 x^2, & x > 0. \end{cases}$$

Найти энергии стационарных состояний и соответствующие им волновые функции.

- 2(12). Частицы, каждая из которых имеет массу m и энергию E, движутся в поле $V(x) = \Omega \delta(x)$. Найти коэффициент отражения как функцию энергии E.
- 3(6). Найти $\left\langle\cos\theta\right\rangle$ и $\left\langle\cos^2\theta\right\rangle$ в 2р-состоянии атома водорода.

Контрольная работа № 3

1(5). Найти импульсное представление волновой функции в центральном поле:

$$\psi(r) = \sqrt{\frac{\kappa}{2\pi}} \frac{\mathrm{e}^{-\kappa r}}{r} \,.$$

- 2(5). В импульсном представлении оператор $\hat{T} = e^{-ipa}$. Найти координатное представление.
- 3(10). Используя квазиклассическое приближение, вычислить уровни энергии стационарных состояний в потенциале

$$U(x) = \begin{cases} \infty, & x < 0, \\ \alpha x, & x > 0, \alpha > 0. \end{cases}$$

Контрольная работа № 4

- 1(20). Определить с помощью вариационного метода Ритца энергию основного состояния электрона в потенциале $U(x)=\frac{\hbar^2}{2m}\sqrt{\pi}\,\gamma^{3/2}\,\big|x\big|$. Пробную функцию основного состояния взять в виде $\psi(x)=A\exp\left[-\frac{1}{2}\alpha x^2\right]$, где α вариационный параметр.
- 2(10). Найти собственные значения оператора $\hat{F} = (\mathbf{a} \cdot \hat{\mathbf{\sigma}})^n$, где \mathbf{a} постоянный вектор.
- 3(10). Пучок электронов с энергией E рассеивается на потенциале $U(r) = U_0 e^{-\alpha r}$, где U_0 и α положительные константы. Определить дифференциальное сечение рассеяния частиц в первом борновском приближении.
- 4(10). На частицу в бесконечно глубокой потенциальной яме ширины *а* накладывают возмущение вида:

$$V(x,t) = \begin{cases} \alpha x \sin^2(\pi t/\tau), & |t| < \tau, \\ 0, & |t| > \tau. \end{cases}$$

Определить вероятность перехода между основным и возбужденными состояниями.

19.3.5 Темы курсовых работ

- 1. Вариационный метод Ритца и эффект Штарка в атомах
- 2. Функция Грина одномерной системы.
- 3. s-уровни в заданной потенциальной яме.
- 4. Туннелирование сквозь два дельта-образных барьера.
- 5. Энергетический спектр и волновые функции одномерного финитного движения в заданном потенциале.
- 6. Движение в потенциале с аксиальной симметрией.
- 7. Распространение волновых пакетов.
- 8. Время жизни 2р-состояния атома водорода.
- 9. Время жизни первого возбужденного состояния осциллятора.
- 10. Связанные состояния в двух дельта-образных потенциальных ямах.

19.3.6 Темы рефератов

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме(ах): устного опроса (индивидуальный опрос); письменных работ (контрольные); тестирования. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и практическое задание, позволяющее оценить степень умения решать практические задачи. При оценивании используются количественные шкалы оценок. Критерии оценивания приведены выше.