МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой теоретической физики

(Фролов М.В.)

02.07.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

<u>Б1.В.04 - Современные и перспективные направления развития физики и астрономии</u> Код и наименование дисциплины в соответствии с Учебным планом

	авления подготовки/специальности: 6.01— физика и астрономия
2. Профиль подготовки/спе .	циализация: <u>«Оптика»</u>
3. Квалификация (степень) в	выпускника: аспирант
4. Форма обучения: <u>очная (дн</u>	евная)
5. Кафедра, отвечающая за ре пеоретической физики 6. Составители программы:	
д.фм.н.	ФИО профессор
ученая степень i-kopytin@yandex.ru	ученое звание физический
_{e-mail} meopemuческой физики	факультет
Кафедра Фролов Михаил Владимиров	<u>ич</u> ФИО
д.фм.н.	доцент
ученая степень frolov@phys.vsu.ru	ученое звание физический
_{e-mail} теоретической физики	факультет
	ического факультета от 27.06.2018 г.протокол № 6 мендующей структуры, дата, номер протокола,

8. Учебный год: 2020-2021

Семестр(-ы): 6

отметки о продлении вносятся вручную)

9. Цели и задачи учебной дисциплины:

Ознакомить слушателей с актуальными в XXI в. направлениями развития физики и астрономии, проблемами, решаемыми в экспериментальных и теоретических исследованиях, методах, используемых для достижения планируемых результатов, и научными результатами, полученными к настоящему времени

10. Место учебной дисциплины в структуре ООП:

Дисциплина является обязательной и относится к вариативной части блока Б1 рабочего учебного плана по подготовке аспирантов по направлению 03.06.01 - Физика и астрономия.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Компет	енция	Планируемые результаты обучения
Код	Название	
УК-1	способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях	знать: основные направления и новые теоретические подходы в современных фундаментальных исследованиях по физике и астрономии;
УК-2	способность проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки	уметь: использовать в профессиональной деятельности знания о достижениях и новых методах фундаментальных исследований в современной физике и астрономии, применять эти знания для освоения профильных дисциплин и решения профессиональных задач;
УК-4	готовность использовать современные методы и технологии научной коммуникации на государственном и иностранном языках	владеть (иметь навык(и)): новыми практическими методами исследования физических процессов и применять их на практике при решении профессиональных
УК-5	способность планировать и решать задачи собственного профессионального и личностного развития	задач
ОПК-1	способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий	
ПК-13	владение современными методами моделирования и проведения эксперимента для изучения взаимодействие света с веществом способность проводить научные	

	исследования с учетом современных представлений оптической спектроскопии
ПК-14	владение современными методами моделирования и проведения эксперимента для изучения оптических свойств наноструктурированных материалов
ПК-15	владение современными методами моделирования и проведения эксперимента в современной фотонике и оптоинформатике
ПК-16	владение современными методами моделирования и проведения эксперимента в современной фотонике и оптоинформатике

12. Объем дисциплины в зачетных единицах/часах (в соответствии с учебным планом) — 4 / 144.

Форма промежуточной аттестации (зачет/экзамен) – зачет с оценкой.

13. Виды учебной работы

	Трудоемкость (часы)				
Вид учебной работы		По семестрам			
вид учестой рассты	Всего	№ семестра 6	№ семестра		
Аудиторные занятия	18	18			
в том числе: лекции	18	18			
практические					
лабораторные					
Самостоятельная работа	126	126			
Форма промежуточной аттестации	Зачет с оценкой	Зачет с оценкой			
Итого:	144	144			

13.1 Содержание дисциплины

Nº	Наименование раздела	Содержание раздела дисциплины			
п/п	дисциплины				
	1. Лекции				
1.1	Современное состояние	Характеристика современных лазерных установок.			
	лазерной физики	Современные цели и задачи лазерной физики. Методы и			
		подходы создания сверхмощных лазерных полей в среднег			
		инфра-красном диапазоне, в рентгеновском диапазоне,			
		лазеры на свободных электронах			
1.2	Нелинейные эффекты	Нелинейная ионизация: туннельная и многофотонная			
	взаимодействия лазерного	ионизация. Генерация высших гармоник атомными и			
	излучения с атомами и	молекулярными системами. Качественные			
	молекулами	квазиклассические модели и элементы теоретического			
		описания нелинейной ионизации и генерации высших			
		гармоник			

1.3	Взаимодействие атомов и молекул с сверхкороткими лазерными импульсами. Аттосекундная физика. Физика терагерцового излучения. Перспективы развития физики сверхсильных лазерных полей	Зависимость генерации гармоник и надпороговой ионизации от относительной фазы лазерного импульса. Аттоклок. Аттосекундная фотоионизация атомов и молекул, нелинейные и интерференционные эффекты. Обзор различных приложений нелинейных процессов для исследования сверхбыстрых явлений в атомах и молекулах. Физика терагерцового излучения. Перспективы развития физики сверхсильных лазерных полей				
1.4	Лазерно-спектроскопические методы создания квантовых систем обработки информации и разработки ультрастабильных стандартов частоты и времени нового поколения	Лазерные методы охлаждения и удержания атомов и ионов в оптических ловушках: электромагнитные ловушки для удержания атомных частиц в ограниченной области пространства; линейная ловушка Пауля для удержания иона; оптическая решетка для захвата и удержания нейтральных атомов. Стандарт частоты на атомах в оптической решетке: штарковский потенциал для захвата нейтрального атома; магические частоты оптической решетки; фундаментальные ограничения и перспективы повышения точности измерения частоты оптического стандарта. Ридберговские атомы для квантовых компьютеров: общие свойства высоковозбужденных ридберговских состояний атомов и ионов; ридберговская блокада и ее использование для логических операций				
1.5	Супер- и суперсимметричная силы. Рождение Вселенной и ее эволюция на ранних этапах. Современные проблемы квантовой космологии	Новая физика фундаментальных взаимодействий. Принцип локальной калибровочной симметрии и фундаментальные взаимодействия. Суперсимметричная сила и Большой взрыв. Суперсила и эволюция Вселенной на ранних этапах. Большой адронный коллайдер и бозон Хиггса. Темная материя и темная энергия				
1.6	Физика	Квантовые точки. Нанотрубки, фуллерены и				
	наноструктурированных	эндофуллерены (эндоэдралы). Новая оптика атомов в				
	веществ	эндоэдралах. Графен				
	2. Практические занятия					
	3. Лабораторные работы					

13.2 Темы (разделы) дисциплины и виды занятий

		Виды занятий (часов)				
№ п/п	Наименование темы (раздела) дисциплины	Лекции	Практические	Лабора- торные	Самостоя- тельная работа	Всего
1	Современное состояние лазерной физики	2			8	10
2	Нелинейные эффекты взаимодействия лазерного излучения с атомами и молекулами	3			22	25
3	Взаимодействие атомов и молекул с сверхкороткими лазерными импульсами. Аттосекундная физика. Физика терагерцового излучения. Перспективы развития физики сверхсильных лазерных полей	4			30	34
4	Лазерно- спектроскопические методы создания квантовых систем обработки информации и разработки	3			14	17

	ультрастабильных				
	стандартов частоты и				
	времени нового				
	поколения				
	Рождение Вселенной и ее				
	эволюция на ранних				
5	этапах. Современные	4		36	40
	проблемы квантовой				
	космологии				
	Физика				
6	наноструктурированных	2		16	18
	веществ				
	Итого:	18		126	144

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение практических заданий, тестов, заданий текущей аттестации и т.д.)

Необходимо после каждой лекции по ее теме разбирать и осваивать лекционный материал, для его лучшего понимания читать рекомендованную основную и дополнительную литературу, готовиться к текущей аттестации в виде собеседования.

15. Перечень основной и дополнительной литературы, ресурсов интернета, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
1	Ишханов Б.С. Частицы и атомные ядра / Б.С.Ишханов, И.М.Капитонов, Н.П.Юдин. – М.: URSS, 2007. – 581 с.
2	Мухин К.Н. Экспериментальная ядерная физика : учебник : [в 3 т.] / К.Н. Мухин. — Санкт-Петербург ; Москва ; Краснодар : Лань .— Т.3: Физика элементарных частиц .— Изд. 6-е, испр. и доп. — 2008 .— 412 с.

б) дополнительная литература:

№ п/п	Источник
3	10th anniversary of attosecond pulse generation // J. Phys. B: At. Mol. Opt. Phys. –
<u> </u>	2012. – V. 45, Issue 7
4	Saffmann M. and Walker T. Quantum information with Rydberg atoms / M. Saffmann
,	and T. Walker // Rev. Mod. Phys. – 2010. – V. 82. – P. 2313-2363
5	Special issue on compact x-ray sources // J. Phys. B: At. Mol. Opt. Phys. – 2014. – V.
	47, Issue 23
6	Special issue on fifty years of optical tunnelling // J. Phys. B: At. Mol. Opt. Phys. –
	2014. – V. 47, Issue 20
7	Special issue on ultrafast electron and molecular dynamics // J. Phys. B: At. Mol. Opt.
/	Phys. – 2014. – V. 47, Issue 12
8	Frontiers of free-electron laser science // J. Phys. B: At. Mol. Opt. Phys. – 2013. – V.
0	46, Issue 16
9	Слабое взаимодействие в физике ядра, частиц и астрофизике / К. Гротц,
9	Г.В. Клапдор-Клайнгротхаус М.: Мир, 1992. — 452 с.
10	Возбужденные атомы / Б.М. Смирнов М.: Энергоиздат, 1982 231 с.
11	Rydberg atoms / T.F. Gallagher Cambridge University Press, 1994 509 p.
12	Суперсила / П. Девис М.: Мир, 1989. — 272 с.
12	Астрофизика элементарных частиц / Г.В. Клапдор-Клайнгротхаус, К.
13	Цюбер М.: Наука, 2000. – 496 c.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет) *:

№ п/п	Ресурс
14	www.interscience.wiley.com/reference/optics Laser cooling and trapping of neutral atoms / H.J. Metcalf and P. van der Straten Optics Encyclopedia Weinheim, Germany Wiley-VCH Verlag GmbH & Co.
15	www.relga.ru И.В. Копытин. Как возник и устроен мир. Современная физика о происхождении Вселенной. Ч. 1 и 2 // Научно-культурологический журнал RELGA 2009 г №15 и №16 Раздел «Наука и техника»
16	http://www.lib.vsu.ru ЗНБ ВГУ

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

- **16.** Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)
- 17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационносправочные системы (при необходимости)

18. Материально-техническое обеспечение дисциплины:

(при использовании лабораторного оборудования указывать полный перечень, при большом количестве оборудования можно вынести данный раздел в приложение к рабочей программе)

Лекционная аудитория, доска, учебная литература, электронные средства презентации.

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание компетенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС* (средства оценивания)
УК-1 способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении	Знать: основные направления и новые теоретические подходы в	Разделы 1.1-1.3	Текущая аттестация №1 (устный опрос)
исследовательских и практических задач, в том числе в междисциплинарных областях УК-2 способность проектировать и осуществлять комплексные	современных фундаментальных исследованиях по физике и астрономии Уметь: использовать в профессиональной деятельности знания о	Раздел 1.4	Текущая аттестация №2 (устный опрос)

исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки УК-4 готовность использовать современные методы и технологии научной коммуникации на государственном и иностранном языках УК-5 способность планировать и решать задачи собственного профессионального и личностного развития ОПК-1 способность самостоятельно осуществлять научной использованием современных методов исследования и информационно-коммуникационных технологий ПК-13 владение современными методами моделирования и проведения эксперимента для изучения взаимодействие света с веществом способность проводить научные исследования с учетом современных представлений оптической спектроскопии ПК-14 владение современными методами моделирования и проведения эксперимента для изучения оптических свойств наноструктурированных материалов ПК-15 владение современными методами моделирования и проведения эксперимента для изучения оптических свойств наноструктурированных материалов ПК-15 владение современными методами моделирования и проведения эксперимента в современной фотонике и оптоинформатике ПК-16 владение современными методами моделирования и проведения эксперимента в современной фотонике и оптоинформатике ПК-16 владение современными методами моделирования и проведения эксперимента в современной фотонике и оптоинформатике ПК-16 владение современными методами моделирования и проведения эксперимента в современной фотонике и оптоинформатике	достижениях и новых методах фундаментальных исследований в современной физике и астрономии, применять эти знания для освоения профильных дисциплин и решения профессиональных задач Владеть: новыми практическими методами исследования физических процессов и применять их на практике при решении профессиональных задач	Разделы 1.5, 1.6	Текущая аттестация №3 (устный опрос)
Промежуточная аттестация			КИМ

* В графе «ФОС» в обязательном порядке перечисляются оценочные средства текущей и промежуточной аттестаций.

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Необходимо знать основные направления фундаментальных исследований и новые теоретические подходы в физике и астрономии, уметь использовать в профессиональной деятельности знания о достижениях современной физики и астрофизики, применять эти знания для освоения профильных дисциплин и решения профессиональных задач, владеть практическими методами исследования физических процессов и применять их на практике при решении профессиональных задач.

Критерии оценивания компетенций	Уровень сформиро- ванности компетенций	Шкала оценок
Подробные и безошибочные ответы на основные и дополнительные вопросы, полное понимание и свободное владение материалом	Повышенный уровень	Зачтено - отлично
Подробные ответы на поставленные вопросы с мелкими	Базовый	Зачтено –
ошибками, незначительные пробелы в знании материала Неудовлетворительные ответы на один из основных вопросов	уровень Пороговый	хорошо Зачтено –
КИМа и некоторые дополнительные вопросы, неполное знание или понимание материала	уровень	зачтено — удовлетвори- тельно
Плохое знание материала, неудовлетворительные ответы на вопросы КИМа и большинство дополнительных вопросов	_	Не зачтено

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к зачету (КИМ):

- 1. Основные характеристики современных лазерных установок.
- 2. Способы создания сверхмощных лазерных полей в среднем инфракрасном диапазоне, в рентгеновском диапазоне и лазеров на свободных электронах.
- 3. Нелинейная ионизация: туннельная и многофотонная ионизация.
- 4. Генерация высших гармоник атомными и молекулярными системами. Качественные квазиклассические модели и элементы теоретического описания нелинейной ионизации и генерации высших гармоник.
- 5. Зависимость генерации гармоник и надпороговой ионизации от относительной фазы лазерного импульса. Аттоклок.
- 6. Аттосекундная фотоионизация атомов и молекул, нелинейные и интерференционные эффекты.
- 7. Приложения нелинейных процессов для исследования сверхбыстрых явлений в атомах и молекулах.
- 8. Физика терагерцового излучения. Перспективы развития физики сверхсильных лазерных
- 9. Лазерные методы охлаждения и удержания атомов и ионов в оптических ловушках: электромагнитные ловушки для удержания атомных частиц в ограниченной области пространства; линейная ловушка Пауля для удержания иона.
- 10. Оптическая решетка для захвата и удержания нейтральных атомов.
- 11. Стандарт частоты на атомах в оптической решетке: штарковский потенциал для захвата нейтрального атома; магические частоты оптической решетки; фундаментальные ограничения и перспективы повышения точности измерения частоты оптического стандарта.

- 12. Ридберговские атомы для квантовых компьютеров: общие свойства высоковозбужденных ридберговских состояний атомов и ионов; ридберговская блокада и ее использование для логических операций.
- 13. Локальные калибровочные симметрии и фундаментальные взаимодействия.
- 14. Объединение фундаментальных взаимодействий: электрослабая сила, Великое объединение и суперсила, суперсимметричная сила.
- 15. Свойства суперсилы и эволюция Вселенной на ранних этапах.
- 16. Исследования на Большом адронном коллайдере, бозон Хиггса. Темная материя и темная энергия.
- 17. Квантовые точки. Нанотрубки, фуллерены и эндофуллерены (эндоэдралы). Новая оптика атомов в эндоэдралах.
- 18. Графены и их практическое использование.

19.3.2 Перечень тем для собеседования к текущим аттестациям №1-№3

Темы для собеседования на текущей аттестации №1

- 1. Современные лазерные установки и их характеристики.
- 2. Способы создания сверхмощных лазерных полей: инфракрасный диапазон; рентгеновский диапазон; на свободных электронах.
- 3. Многофотонная и туннельная нелинейные ионизации атомов.
- 4. Идейная база моделей для теоретического описания нелинейной ионизации и генерации гармоник.
- 5. Закономерности аттосекундной фотоионизации атомов и молекул.
- 6. Нелинейные процессы и сверхбыстрые явления в атомах и молекулах.
- 7. Физика терагерцового излучения.

Темы для собеседования на текущей аттестации №2

- 1. Оптические ловушки для лазерных методов охлаждения и удержания атомов и ионов.
- 2. Особенности оптической решетки для захвата и удержания нейтральных атомов.
- 3. Стандарты частоты на атомах в оптической решетке, ограничения и перспективы повышения точности измерения частоты оптического стандарта.
- 4. Общие свойства высоковозбужденных ридберговских состояний атомов и ионов.
- 5. Ридберговская блокада и ее использование для логических операций в квантовых компьютерах.

Темы для собеседования на текущей аттестации №3

- 1. Принцип локальной калибровочной симметрии в физике фундаментальных взаимодействий.
- 2. Калибровочная симметрия электромагнитного, сильного и слабого взаимодействий и новые их свойства.
- 3. Объединение фундаментальных взаимодействий: электрослабая сила и бозон Хиггса, супер- и суперсимметричная силы, свойства этих сил.
- 4. Закономерности Вселенной, свойства суперсилы и эволюция Вселенной на ранних этапах.
- 5. Основания для введения понятий темной материи и темной энергии.
- 6. Особенности физики новых структур: квантовых точек, нанотрубок, фуллеренов и эндофуллеренов.
- 7. Физические особенности графенов.

19.3.3 Тестовые задания

19.3.4 Перечень заданий для контрольных работ

19.3.5 Темы курсовых работ

19.3.6 Темы рефератов

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме(ах): устного опроса (индивидуальный опрос); письменных работ (контрольные); тестирования. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и практическое задание, позволяющее оценить степень умения решать практические задачи. При оценивании используются количественные шкалы оценок. Критерии оценивания приведены выше.