МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный университет» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой уравнений в частных производных и теории вероятностей

> А.В. Глушко 03.07.2018

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

<u>ФТД. В.01 Математические модели сплошных сред</u> Код и наименование дисциплины в соответствии с Учебным планом

1. Шифр и наименование нап 01.04.01 Математика	равления подготовки/специальности:
2. Профиль подготовки/спецы Динамические системы и оптим	иализации: <u>Дифференциальные уравнения ,</u> иальное управление
3. Квалификация (степень) вы	ыпускника: <u>Магистр</u>
4. Форма образования : _Очна	<u>я</u>
• • • •	реализацию дисциплины: <u>Кафедра уравнений в</u> вероятностей математического факультета
математических наук, професс теории вероятностей, kuchp2@	
(ФИО, ученая степень, ученое з 7. Рекомендована: <u>Научно-</u> факультета. Протокол № 050	методическим советом математического
8. Учебный год: <u>2018/2019</u>	Семестр(-ы): <u>2</u>

- 9. Цели и задачи учебной дисциплины: Цель и задачи изучения дисциплины. Целью специального курса является изложение основ математического моделирования сплошной среды, знакомство студентов с теориями деформации, напряжения, основными положениями гидродинамики. Основной целью курса является построение математических моделей движения идеальных, вязких, сжимаемых, вращающихся, стратифицированных жидкостей.
- **10. Место учебной дисциплины в структуре ООП:** (цикл, к которому относится дисциплина, требования к входным знаниям, умениям и компетенциям, дисциплины, для которых данная дисциплина является предшествующей)

Курс входит в цикл факультативных дисциплин вариативной части.

Для его успешного освоения необходимы знания и умения, приобретенные в результате обучения по предшествующим дисциплинам: математический анализ, комплексный анализ, функциональный анализ, дифференциальные уравнения, теоретическая механика.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Компетен	нция	Планируемые результаты обучения
Код	Название	
ОПК-1	способность находить, формулировать и решать актуальные и значимые проблемы фундаментальной и прикладной математики	Знать: актуальные и значимые проблемы фундаментальной и прикладной математики. Уметь; решать актуальные и значимые проблемы фундаментальной и прикладной математики. Владеть; методами решения актуальных и значимых проблем фундаментальной и прикладной математики
ОПК-2	способность создавать и исследовать новые математические модели в естественных науках	Знать: новые математические модели в естественных науках. Уметь: создавать и исследовать новые математические модели в естественных науках. Владеть; методами исследования новых математических моделей в естественных науках
ПК-1	способность к интенсивной научно-исследовательской работе	Знать: принципы исследования, нелинейных дифференциальных уравнений с частными производными. Уметь: использовать фундаментальные знания в построения и исследования решений нелинейных дифференциальных уравнений с частными производными. Владеть: методами математического и моделирования при анализе

	математических	моделей	физическ	NX N
	механических	задач	для	их
	дальнейшего прі	именения		

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — 2/2.

Знание методов моделирования задач гидродинамического типа может существенно помочь при построении и анализе различных математических моделей, возникающих в физике, химии, биологии, медицине, а также в технике. Кроме того, системы дифференциальных уравнений гидродинамического типа изучаются в целом ряде направлений современной математики.

13. Виды учебной работы:

тэ. виды учеоной рассты.				
D	Трудоемкость (часы)			
Вид учебной работы	Doore	По семестрам		
	Всего	1 сем.	2 сем	
Аудиторные занятия	16	16	16	
в том числе:	16	16	16	
лекции	. 0		.0	
Практические				
Лабораторные	-	-		
Контактная работа	32	16	16	
со студентами	02	10	10	
Самостоятельная	40	20	20	
работа	40	20	20	
Итого:	72	36	36	
Форма				
промежуточной			зачет	
аттестации				

13.1. Содержание дисциплины:

Контактная работа со студентами

№ п/п	Наимено вание раздела дисципл	Содержание раздела дисциплины	Количес тво часов
03	ины Гидроди намика	Основы гидродинамики. Распределение скоростей в произвольно малой частице сплошной среды. Роль слагаемого $\nabla \Phi$ в представлении $\vec{v}^1 = \vec{v} + \nabla \Phi + \vec{\omega} \times \vec{\rho} + \rho_0 \cdot o(1)$. Формула дифференцирования по времени интеграла, взятого по подвижному объему. Уравнение неразрывности в переменных Эйлера. Уравнения движения сплошной среды. Ограничения, налагаемые уравнением	8

количества движения на напряжения. Дальнейшие преобразования уравнений движения сплошной среды. Тензорная поверхность тензора напряжений.	
Идеальная жидкость. Идеальные жидкость и газ. Уравнения движения идеальной жидкости (уравнения Эйлера). Уравнения движения идеальной жидкости в форме Громеки-Лемба	8
Вязкая жидкость. Определение вязкой жидкости. Закон Навье-Стокса. Изотропная среда. Доказательство представлений коэффициентов зависимости B_{ijpq} из закона Навье-Стокса. Закон Навье-Стокса для изотропной вязкой среды. Уравнения движения изотропной жидкости. Вязкая несжимаемая жидкость. Линеаризация уравнений движения вязкой несжимаемой жидкости	8
Сжимаемые и стратифицированные жидкости. Сжимаемые жидкости. Уравнения движения. Уравнения движения сжимаемой жидкости во вращающейся системе координат. Стратифицированные жидкости. Физический смысл частоты Вейсяля-Брента. Система уравнений, описывающая внутренние гравитационногироскопические волны	8

Самостоятельная работа

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Количество часов
03	Гидродинамика	 Общее уравнение движения жидкого объема. Напряжение в жидкой среде. Теорема Коши-Гельмгольца. Уравнения Эйлера. Модели жидких идеальных сред. Понятие вязкой жидкости. Закон Навье-Стокса. Модели жидких вязких сред. 	14
04	Частные случаи и примеры	1. Основные свойства потенциального движения несжимаемой жидкости в односвязных областях (свойства гармонических функций:	26

принцип максимума, теорема среднем; простейшие внутренние краевые задачи для уравнения Лапласа).

2. Плоские задачи о движении тел в идеальной жидкости (примеры постановок внешних краевых задач Дирихле и Неймана для уравнения Лапласа).

Стационарное течение вязкой однородной жидкости в трубах:

- а) течение в трубах с круговым и эллиптическим сечениями (краевая Дирихле задача уравнения Лапласа в круге);
- б) течение в трубе с прямоугольным сечением и течение в плоском канале твердыми стенками (краевая задача Дирихле для уравнения Лапласа в прямоугольнике).
- Распределение скоростей идеальной несжимаемой жидкости при ускоренном движении сферы (краевая задача Неймана уравнения Лапласа вне шара).
- 4. Нестационарное течение вязкой однородной жидкости в трубе с круговым сечением (начальнокраевая Дирихле задача для уравнения теплопроводности круге).
- Нестационарные слоистые течения: тангенциальный разрыв (задача уравнения Коши для теплопроводности на бесконечной прямой).

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение практических заданий, тестов, заданий текущей аттестации и т.д.)

В процессе преподавания дисциплины используются такие виды учебной работы, как контактная работа со студентами и самостоятельная работа студентов.

В ходе подготовки к контактным занятиям необходимо прочитать конспекты лекций и ознакомиться с дополнительной литературой по курсу ФТД.1. Математические модели СПЛОШНЫХ сред.. Начинать надо всегда рекомендованной литературы. Особое внимание при этом необходимо обратить на содержание основных положений и выводов, уяснения практического положения рассматриваемых теоретических вопросов. Большое значение имеет

совершенствование навыков конспектирования. Преподаватель может рекомендовать студентам следующие основные формы записи: план (простой и развернутый), выписки, тезисы. Результаты конспектирования могут быть представлены в различных формах (конспект, план-конспект, текстуальный конспект, свободный конспект, тематический конспект и др.). В процессе подготовки к занятиям рекомендуется взаимное обсуждение материала, во время которой закрепляются знания, а также приобретается практика в изложении и разъяснении полученных знаний, развивается речь.

При необходимости следует обращаться за консультацией к преподавателю.

Успешное освоение курса предполагает активное, творческое участие студента путем планомерной, повседневной работы

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

Nº ⊓/⊓	Источник
01	Глушко В.П. Курс уравнений математической физики с использованием пакета Mathematica. Теория и технология решения задач : учеб. пособие / В.П. Глушко, А.В. Глушко. – СПб : Лань, 2010. – 320 с. илл. (+CD).
02	Глушко А.В. Математическое моделирование гидродинамических процессов / А.В. Глушко, В.Е. Петрова. — Воронеж : ИПЦ ВГУ, 2013. — 79 с.

б) дополнительная литература:

Nº	Источник
п/п	PIOTO IIIVIIK
02	Глушко А.В. Математические модели в гидродинамике / А.В. Глушко, В.П. Глушко. — Воронеж, 2003. — № 625. — 38 с.
03	Глушко, А.В. Асимптотические методы в задачах гидродинамики / А.В.Глушко .— Воронеж : Воронеж. гос. ун-т, 2003 .— 300 с.
04	Самуль В.И. Основы теории упругости и пластичности / В.И. Самуль. – М. : Наука, 1970 273с.
בנו	Седов Л.И. Механика сплошной среды / Л.И. Седов М.: Наука, 1976Т. 1 535 с.
I I In	Бреховских Л.М. Введение в механику сплошной среды / Л.М. Бреховских, В.В. Гончаров. – М. : Наука, 1982. – 329 с.
1117	Ильюшин А.А. Механика сплошной среды / А.А. Ильюшин. — М. : МГУ, 1990, — 310 с.
1 1112	Падыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости / О.А. Ладыженская. – М. : Наука, 1970. – 288 с.

в) базы данных, информационно-справочные и поисковые системы:

Nº	Источник
п/п	MINITEDIOTI
07	http://eqworld.ipmnet.ru – интернет-портал, посвященный уравнениям и

	методам их решений
08	http://www.lib.vsu.ru - электронный каталог ЗНБ ВГУ
	<u>http://www.kuchp.ru</u> – электронный сайт кафедры уравнений в частных
09	производных и теории вероятностей, на котором размещены
	методические издания

16. Перечень учебно-методического обеспечения для самостоятельной работы

(учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

Nº	Источник
п/п	VIOTO-HIVIK
02	Глушко А.В. Математические модели в гидродинамике / А.В. Глушко, В.П. Глушко. – Воронеж, 2003. – № 625. – 38 с.
03	Глушко, А.В. Асимптотические методы в задачах гидродинамики / А.В.Глушко .— Воронеж : Воронеж. гос. ун-т, 2003 .— 300 с.
1124	Самуль В.И. Основы теории упругости и пластичности / В.И. Самуль. – М. : Наука, 1970 273с.
1112	Седов Л.И. Механика сплошной среды / Л.И. Седов М.: Наука, 1976Т. 1 535 с.
l III	Бреховских Л.М. Введение в механику сплошной среды / Л.М. Бреховских, В.В. Гончаров. – М. : Наука, 1982. – 329 с.
07	Ильюшин А.А. Механика сплошной среды / А.А. Ильюшин. — М. : МГУ, 1990, — 310 с.
1112	Падыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости / О.А. Ладыженская. — М. : Наука, 1970. — 288 с.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

18. Материально-техническое обеспечение дисциплины:

(при использовании лабораторного оборудования указывать полный перечень, при большом количестве оборудования можно вывести данный раздел в приложение к рабочей программе)

- 1. Типовое оборудование учебной аудитории
- 2. Зональная научная библиотека, электронный каталог Научной библиотеки ВГУ (http://www.lib.vsu.ru

19. Фонд оценочных средств

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

1.5	_	<u> </u>	+ O O +
Код и содержание	Планируемые	Этапы формирования	ФОС*
компетенции (или ее	результаты обучения	компетенции	(средства
части)	(показатели достижения	(разделы (темы)	оценивания)
	заданного уровня	дисциплины или	
	освоения компетенции	модуля и их	
	посредством	наименование)	
	формирования знаний,		

	умений, навыков)			
ОПК-1.	Сформировать и	Гидродинамика.	эссе	
Способность	развить способность	Частные случаи и		
находить,	находить,	примеры.		
формулировать и	формулировать и	Приморы.		
решать актуальные	решать актуальные			
и значимые	и значимые			
проблемы	проблемы			
1 -	фундаментальной и			
фундаментальной	прикладной			
и прикладной	математики.			
математики.				
ОПК-2.	Сформировать и развить способность	Гидродинамика.	эссе	
Способность	•	Частные случаи и		
создавать и	создавать и	примеры.		
исследовать новые	исследовать новые			
математические	математические			
модели в	модели в			
естественных	естественных			
науках.	науках.			
ПК-1. Способность	Изучить принципы	Гидродинамика.	эссе	
к интенсивной	исследования,	Частные случаи и		
научно-	нелинейных	примеры.		
исследовательской	дифференциальных	, ,		
работе	уравнений с			
	частными			
	производными.			
	Уметь:			
	использовать			
	фундаментальные			
	знания в			
	построения и			
	исследования			
	решений			
	нелинейных			
	дифференциальных			
	уравнений с			
	частными			
	производными.			
	Владеть: методами			
	математического и			
	моделирования при			
	анализе			
	математических			
	моделей			
	физических и			
	механических задач			
	для их дальнейшего			
	применения			
Промежуточная аттестация КИМ (Зачет)				

19.2. Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Vритории опоширония компотонной	Vnorou	Шково ополож
Критерии оценивания компетенций	Уровень	Шкала оценок
	сформированности	
05	компетенций	- Llagarra-
Обучающийся не владеет	-	«Незачет»
основами учебно-программного		
материала, обнаружившему		
пробелы в знаниях основного		
учебно-программного материала,		
допустившему принципиальные ошибки в выполнении		
предусмотренных программой		
заданий. Как правило, оценка		
"незачтено" ставится студентам,		
которые не могут продолжить		
обучение или приступить к		
профессиональной деятельности		
по окончании вуза без		
дополнительных занятий по		
соответствующей дисциплине.		
Оценка «зачтено» выставляется	Базовый	"Зачтено"
обучающимся, обнаружившим	Васовый	
всестороннее, систематическое и		
глубокое знание учебно-		
программного материала, умение		
свободно выполнять задания,		
предусмотренные программой,		
усвоивший основную и знакомый с		
дополнительной литературой,		
рекомендованной программой. Как		
правило, оценка "отлично"		
выставляется студентам,		
усвоившим взаимосвязь основных		
понятий дисциплины в их значении		
для приобретаемой профессии,		
проявившим творческие		
способности в понимании,		
изложении и использовании		
учебно-программного материала.		
Оценка «отлично» выставляется,		
если студент в полном объеме и		
правильно ответил на все вопросы		
контрольно-измерительного		
материала (как на теоретическую,		
так и на практическую части)		

19.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к экзамену (зачету): (нужное выбрать)

Темы эссе (рефератов, докладов, сообщений)

по дисциплине

ФТД.1 Математические модели сплошных сред

(наименование дисциплины)

- 1. Основные свойства потенциальных движений идеальной несжимаемой жидкости в односвязных областях. (Свойства гармонических функций (принцип максимума, теорема о среднем). Простейшие внутренние краевые задачи для уравнения Лапласа).
- 2. Плоские задачи о движении тел в идеальной жидкости. (Примеры постановок внешних краевых задач Дирихле и Неймана для уравнения Лапласа).
- 3. Стационарные течения вязкой однородной жидкости в трубах. Течение в трубах с круговым и эллиптическим сечением. (Краевая задача Дирихле для уравнения Пуассона в круге).
- 4. Стационарные течения вязкой однородной жидкости в трубах. Течение в трубе с прямоугольным сечением и течение в плоском канале с твердыми стенками. (Краевая задача Дирихле для уравнения Пуассона в прямоугольнике).
- 5. Распределение скоростей в идеальной несжимаемой жидкости при ускоренном движении сферы. (Краевая задача Неймана для уравнения Лапласа во внешности шара. Единственность решения внешних задач в трехмерном случае).
- 6. Нестационарное течение вязкой жидкости в трубе с круговым сечением. (Начально-краевая задача для уравнения теплопроводности в круге).
 - 7. Нестационарные слоистые течения.
- 8. Тангенциальный разрыв. (задача Коши для уравнения теплопроводности на бесконечной прямой).
- 9. Движение твердой поверхности. (Начально-краевая задача Дирихле для уравнения теплопроводности на полупрямой).
- 10. Течение под действием касательного напряжения. (начально-краевая задача Неймана для уравнения теплопроводности на полупрямой).

Критерии оценки эссе:

- Оценка «зачтено» выставляется студенту, если он полностью разобрался в предложенном материале, установил связи между гидродинамическими моделями и изученными на курсе УМФ (УЧП) задачами, при этом качественно скомпоновал и изложил материал эссе.

- Оценка «незачтено» » выставляется студенту, если он не смог разобраться в предложенном материале и (или) изложил материал некачественно.

19.3.2 Перечень практических заданий

19.3.3 Тестовые задания

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Текущий контроль представляет собой проверку усвоения учебного материала теоретического и практического характера, регулярно осуществляемую на занятиях.

К форме контроля относится сдача эссе.

Задание для текущего контроля и проведения промежуточной аттестации должны быть направлены *на оценивание:*

- 1. уровня освоения теоретических и практических понятий, научных основ профессиональной деятельности;
- 2. степени готовности обучающегося применять теоретические и практические знания и профессионально значимую информацию, сформированности когнитивных умений.
- 3. приобретенных умений, профессионально значимых для профессиональной деятельности.

На зачете оценивается практический уровень освоения дисциплины и степень сформированности компетенции.

Критерии оценки по курсу приведены выше