МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой функционального анализа и операторных уравнений

*К*а⊶ Каменский М.И.

26.06.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.ОД.2 Теория всплесков

- 1. Шифр и наименование направления подготовки / специальности: 02.04.01 математика и компьютерные науки
- 2. Профиль подготовки / специализации:

математическое и компьютерное моделирование

- 3. Квалификация (степень) выпускника: магистр
- 4. Форма образования: очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** функционального анализа и операторных уравнений
- **6. Исполнители программы:** Новиков Игорь Яковлевич, д.ф.-м.н., математический факультет, кафедра функционального анализа и операторных уравнений, igor.nvkv@gmail.com
- **7. Рекомендована**: НМС математического факультета, протокол №0500-06 от 03.07.2018
- **8.** Учебный год: 2018-2019 **Семестр(ы)**: первый

9. Цели и задачи учебной дисциплины:

Целью курса является ознакомление студентов с основными понятиями и методами теории всплесков. Задачами курса являются:

- 1) изучение оконного преобразования Фурье;
- 2) изучение непрерывного всплескового преобразования;
- 3) изучение фреймов и рядов всплесков.
- **10. Место учебной дисциплины в структуре ООП:** дисциплина относиться к профессиональному циклу и является обязательной дисциплиной вариативной части данного цикла.

Основные дисциплины и их разделы, необходимые для усвоения курса «Теория всплесков»:

- математический анализ;
- функциональный анализ.

Дисциплина «Теория всплесков» является необходимой для усвоения учебных курсов по функциональному анализу и компьютерным наукам.

11. Компетенции обучающегося, формируемые в результате освоения дисциплины:

- а) общекультурные (ОК): способность к абстрактному мышлению, анализу, синтезу (ОК-1);
- б) общепрофессиональные (ОПК): способность находить, формулировать и решать актуальные и значимые проблемы фундаментальной и прикладной математики (ОПК-1); способность создавать и исследовать новые математические модели в естественных науках (ОПК-2);
- в) профессиональные (ПК): способность к интенсивной научноисследовательской работе (ПК-1); способность публично представить собственные новые научные результаты (ПК-3); способность к применению методов математического и алгоритмического моделирования при решении теоретических и прикладных задач (ПК-4).

12. Структура и содержание учебной дисциплины

12.1 Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — 3/108.

12.2 Виды учебной работы

		сть (часы)	
D	Всего	В том числе интерактивные часы	По семестрам
Вид учебной работы			сем. 1
Аудиторные занятия	44		44
в том числе: лекции	16		16

практические	0	0
лабораторные	32	32
Самостоятельная работа	24	24
Контроль	36	36
Итого:	108	108
Формы промежуточных аттестаций		1 контрольная работа, экзамен

12.3. Содержание разделов дисциплины

Nº ⊓/⊓	Наименование раздела дис- циплины	Содержание раздела дисциплины	
1.	Оконное преобразование Фурье.	Преобразование Габора. Оконное преобразование Фурье. Формулы обращения.	
2.	Непрерывные всплесковые преобразования	Определение и основные свойства. Формулы обращения. Двоичное всплесковое преобразование	
3.	Фреймы	Определение и свойства. Базисы Рисса.	
4.	Ряды всплесков	Определение и свойства. Типы всплесков. Сходимость.	

12.4 Междисциплинарные связи

Nº п/п	Наименование дисциплин учебного плана, с которым организована взаимосвязь дисциплины рабочей про-	№ разделов дисциплины рабочей программы, связанных с	
	граммы	указанными дисциплинами	
1.	Функциональный анализ	1-4	
2.	Компьютерные науки	1-4	

12.5. Разделы дисциплины и виды занятий

№ π/ π	Наименование раздела дисциплины	Виды занятий (часов)				
		Лекции	Контроль	Лабораторные	Самостоятельная работа	Всего
1.	Оконное преобразова- ние Фурье.	4	9	7	7	27
2.	Непрерывные вспле- сковые преобразова- ния.	4	9	7	7	27
3.	Фреймы	4	9	7	7	27
4.	Ряды всплесков	4	9	7	7	27
	Итого:	16	36	28	28	108

13. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

а) основная интература.				
№ п/п	Источник			
1	<u>Чуи, Чарльз К.</u> Введение в вэйвлеты : Учебное пособие для студ. вузов по специальности "Прикладная			
1.	математика" / К. Чуи ; пер. с англ. Я. М. Жилейкина .— М. : Мир, 2001 .— 412 с			
	<u>Малла, Стефан</u> . Вэйвлеты в обработке сигналов : учебное пособие для студ. вузов, обуч. по			
2.	специальности 010200 "Прикладная математика и информатика" и по направлению 510200			
	"Прикладная математика и информатика" / С. Малла ; пер. со 2-го англ. изд. Я.М. Жилейкина .— М. :			

M	p, 2005 . — 671 c.

- б) дополнительная литература:
- в) информационные электронно-образовательные ресурсы:

14. Материально-техническое обеспечение дисциплины:

Лекционная аудитория, аудитории для лабораторных, компьютер, мультимедийный проектор, доска (мел, маркеры).

15. Форма организации самостоятельной работы:

Аудиторные занятия, лекции и лабораторные занятия предполагают самостоятельную работу студентов по данному курсу. На лекциях предлагаются для самостоятельного изучения некоторые дополнительные темы, предлагаются для самостоятельного доказательства некоторые теоремы и следствия. На лабораторных занятиях предусмотрены домашние задания, а также дополнительные задания для сильных студентов.

16. Критерии аттестации по итогам освоения дисциплины:

отлично	90-100 баллов
хорошо	70-90 баллов
удовлетворительно	50-69 балла
неудовлетворительно	0-49 баллов