<u>www.vsu.ru</u> ПВГУ 2.1.02 – 2017

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой цифровых технологий

С.Д.Кургалин 30.06.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.Б.19 ЧИСЛЕННЫЕ МЕТОДЫ

1. Код и наименование направления подготовки/специальности:

02.03.01 Математика и компьютерные науки

- 2. Профиль подготовки/специализация: для всех профилей
- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины: цифровых технологий
- **6. Составители программы:** Крыловецкий Александр Абрамович, кандидат физикоматематических наук, доцент
- **7. Рекомендована:** Научно-методическим советом факультета компьютерных наук (протокол № 6 от 25.06.2018)
- 8. Учебный год: 2019-2020, 2020-2021 Семестр(ы): 4, 5

- 9. Цели и задачи учебной дисциплины: изучение основных методов приближенного решения математических задач, их алгоритмизации и реализации на ЭВМ.
- **10. Место учебной дисциплины в структуре ООП:** дисциплина относится к базовой части блока Б1. Для успешного освоения дисциплины необходимо предварительное изучение курса математического анализа, дифференциальных уравнений и алгебры. Дисциплина является предшествующей для курсов «Методы оптимизации», «Математическое моделирование».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Компетенция		Планируемые результаты обучения	
Код	Название		
ОПК-1	Готовность использовать фундаментальные знания в области математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, дискретной математики и математической логики, теории вероятностей, математической статистики и случайных процессов, численных методов, теоретической механики в будущей профессиональной деятельности.	знать: основные численные методы решения математических задач, методы оценки и контроля погрешностей; уметь: применять методы численного анализа для решения задач профессиональной деятельности; владеть: навыками самостоятельного выбора методов для решения различных задач профессиональной деятельности.	
ОПК-4	Способность находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем.	знать: основные алгоритмы численного анализа; уметь: реализовывать численные методы на ЭВМ; владеть: математическим аппаратом численного анализа, навыками реализации численных методов на ЭВМ, разработки приклад-	
ПК-5	Способность использовать методы математического и алгоритмического моделирования при решении теоретических и прикладных задач.	ных программ. знать: методы математического и алгоритмического моделирования; уметь: выбирать и адаптировать существующие численные методы для решения задач, возникающих в профессиональной деятельности; владеть: навыками квалифицированного выбора и адаптации существующих методов приближенного решения математических задач.	

12. Объем дисциплины в зачетных единицах/час — 8/288.

Форма промежуточной аттестации: 4 семестр – зачёт с оценкой; 5 семестр – экзамен.

13. Виды учебной работы

		Трудоемкость (часы)			
Donato San Xana Caran		По семестрам			
Бид уч	ебной работы	Всего	4 сем.	5 сем.	
Аудиторные занятия		114	48	66	
в том числе:	лекции	50	16	34	
	практические лабораторные		16	16	
			16	16	
Самостоятельная работа Экзамен Итого:		138	96	42	
		36		36	
		288	144	144	

13.1. Содержание дисциплины

п/п	Наименование раздела дис- циплины	Содержание раздела дисциплины			
	1. Лекции				
1.1	Разностные уравнения	Сеточные функции. Разностные уравнения. Решение краевых задач для уравнений второго порядка. Разностные уравнения как операторные уравнения.			
1.2	Интерполяция и числен- ное интегрирование	Интерполяция и приближение функций. Численное интегрирование.			
1.3	Численное решение систем линейных алгебраических уравнений	Системы линейных алгебраических уравнений. Прямые методы. Итерационные методы. Вариационно-итерационные методы.			
1.4	Разностные методы ре- шения краевых задач для обыкновенных диффе- ренциальных уравнений	Основные понятия теории разностных схем. Однородные трехточечные разностные схемы. Консервативные разностные схемы.			
1.5	Задача Коши для обыкновенных дифференциальных уравнений	Методы Рунге-Кутты. Многошаговые методы. Методы Адамса. Аппроксимация задачи Коши для системы линейных дифференциальных уравнений первого порядка. Устойчивость двухслойной схемы.			
1.6	Разностные методы для эллиптических уравнений	Разностные схемы для уравнения Пуассона. Решение разностных уравнений.			
1.7	Разностные методы ре- шения уравнения тепло- проводности	Уравнение теплопроводности с постоянными коэффициентами. Многомерные задачи теплопроводности.			
1.8	Библиотека подпрограмм IMSL для языка Фортран.	Подпрограммы решения систем линейных уравнений. Подпрограммы интерполяции и аппроксимации. Подпрограммы численного интегрирования и дифференцирования. Подпрограммы решения дифференциальных уравнений.			
1.9	Реализация численных расчетов в системах	Подпрограммы решения нелинейных уравнений. Организация численных расчетов в системе Maple. Основные функции численных расчетов в Maple.			

	Maple и Mathematica.	Организация численных расчетов в системе Mathematica. Основные функции численных расчетов в Mathematica.			
	2. Лабораторные занятия				
2.1	Разностные уравнения	Сеточные функции. Разностные уравнения. Решение краевых задач для уравнений второго порядка. Разностные уравнения как операторные уравнения.			
2.2	Интерполяция и числен- ное интегрирование	Интерполяция и приближение функций. Численное интегрирование.			
2.3	Численное решение систем линейных алгебраических уравнений	Системы линейных алгебраических уравнений. Прямые методы. Итерационные методы. Вариационно-итерационные методы.			
2.4	Разностные методы ре- шения краевых задач для обыкновенных диффе- ренциальных уравнений	Основные понятия теории разностных схем. Однородные трехточечные разностные схемы. Консервативные разностные схемы.			
2.5	Задача Коши для обыкновенных дифференциальных уравнений	Методы Рунге-Кутты. Многошаговые методы. Методы Адамса. Аппроксимация задачи Коши для системы линейных дифференциальных уравнений первого порядка. Устойчивость двухслойной схемы.			
2.6	Разностные методы для эллиптических уравнений	Разностные схемы для уравнения Пуассона. Решение разностных уравнений.			
2.7	Разностные методы ре- шения уравнения тепло- проводности	Уравнение теплопроводности с постоянными коэффициентами. Многомерные задачи теплопроводности.			
2.8	Библиотека подпрограмм IMSL для языка Фортран.	Подпрограммы решения систем линейных уравнений. Подпрограммы интерполяции и аппроксимации. Подпрограммы численного интегрирования и дифференцирования. Подпрограммы решения дифференциальных уравнений. Подпрограммы решения нелинейных уравнений.			
2.9	Реализация численных расчетов в системах Maple и Mathematica.	Организация численных расчетов в системе Maple. Основные функции численных расчетов в Maple. Организация численных расчетов в системе Mathematica. Основные функции численных расчетов в Mathematica.			

13.2. Темы (разделы) дисциплины и виды занятий

	Наименование темы (раздела) дисциплины	Виды занятий (часов)				
№ п/п		Лекции	Практи- ческие	Лабора- торные	Самостоя- тельная ра- бота	Всего
1	Разностные уравнения	4	2	2	8	16
2	Интерполяция и численное интегрирование	8	4	4	20	36
3	Численное решение систем линей- ных алгебраических уравнений	8	4	4	20	36

4	Разностные методы решения краевых задач для обыкновенных дифференциальных уравнений	4	4	4	8	20
5	Задача Коши для обыкновенных дифференциальных уравнений	6	4	4	18	32
6	Разностные методы для эллиптиче- ских уравнений	6	4	4	16	30
7	Разностные методы решения уравнения теплопроводности	6	4	4	16	30
8	Библиотека подпрограмм IMSL для языка Фортран.	4	2	2	16	24
9	Реализация численных расчетов в системах Maple и Mathematica.	4	4	4	16	28
	Итого:	50	32	32	138	252

14. Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины рекомендуется использовать следующие средства:

- рекомендуемую основную и дополнительную литературу;
- методические указания и пособия;
- контрольные задания для закрепления теоретического материала;
- электронные версии учебников и методических указаний для выполнения практических работ.

Форма организации самостоятельной работы: подготовка к аудиторным занятиям; выполнение домашних заданий; выполнение контрольных работ.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник	
1	Бахвалов, Н. С. Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. — Москва : БИНОМ. Лаборатория знаний, 2012. — 636 с. — <url:< td=""></url:<>	
	http://biblioclub.ru/index.php?page=book&id=222833>.	
2	Демидович, Б.П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения [Электронный ресурс] : учебное пособие / Б.П. Демидович, И.А. Марон, Э.З. Шувалова. — Электрон. дан. — СПб. : Лань, 2010. — 400 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1_id=537	
3	Демидович, Б.П. Основы вычислительной математики [Электронный ресурс] : учебное пособие / Б.П. Демидович, И.А. Марон. — Электрон. дан. — СПб. : Лань, 2011. — 665 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1 id=2025	

б) дополнительная литература:

№ п/п	Источник	
4	Введение в методы вычислений: конспект лекций и примеры программ: учебное пособие для вузов / А.А. Крыловецкий, Т.А. Крыловецкая, А.В. Атанов, И.С. Черников. — Воронеж: Издател ский дом ВГУ, 2015. — 90 с.	
5	Киреев, В.И. Численные методы в примерах и задачах [Электронный ресурс] : учебное пособие / В.И. Киреев, А.В. Пантелеев. — Электрон. дан. — СПб. : Лань, 2015. — 448 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1_id=65043	
6	Копченова, Н.В. Вычислительная математика в примерах и задачах [Электронный ресурс] : учебное пособие / Н.В. Копченова, И.А. Марон. — Электрон. дан. — СПб. : Лань, 2009. — 368 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1_id=198	

-	7 Самарский, А.А. Численные методы математической физики : [Учебное пособие] / А. А. ский, А. В. Гулин. — М. : Научный мир, 2000.		
8	8	Самарский, А.А. Введение в численные методы : учебное пособие для вузов / А. А. Самарский ; Моск. гос. ун-т им. М. В. Ломоносова. — Изд. 3-е, стер. — СПб. : Лань, 2005. — 288 с.	

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
9	<u>www.lib.vsu.ru</u> –3HБ ВГУ

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник	
1	Введение в методы вычислений: конспект лекций и примеры программ: учебное пособие для вузов / А.А. Крыловецкий, Т.А. Крыловецкая, А.В. Атанов, И.С. Черников. — Воронеж: Издательский дом ВГУ, 2015. — 90 с.	

- 17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости) программы Maple, Mathematica.
- **18. Материально-техническое обеспечение дисциплины:** лекционная аудитория, оснащённая мультимедийным проектором, компьютерный класс с необходимым программным обеспечением.

19. Фонд оценочных средств:

19.1 Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содер- жание компе- тенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС (средства оценива- ния)
	Знать: основные численные методы решения математических задач, методы оценки и контроля погрешностей.	Разделы 1-11	Письменный опрос по темам разделов 1-9
ОПК-1	Уметь: применять методы численного анализа для решения задач профессиональной деятельности.	Разделы 1-11	Контрольные работы 1-3 Лабораторные работы 1-20
	Владеть: навыками самостоятельного выбора методов для решения различных задач профессиональной деятельности.	Разделы 1-11	Контрольные работы 1-3 Лабораторные работы 1-20
	Знать: основные алгоритмы численного анализа.	Разделы 1-11	Письменный опрос по темам разделов 1-9
ОПК-4	Уметь: реализовывать численные методы на ЭВМ.	Разделы 1-11	Контрольные работы 1-3 Лабораторные работы 1-20
	Владеть: математическим аппаратом численного анализа, навыками реализации численных методов на ЭВМ, разработки	Разделы 1-11	Контрольные работы 1-3 Лабораторные работы

	прикладных программ.		1-20
ПК-5	Знать: методы математического и алгоритмического моделирования.	Разделы 1-11	Письменный опрос по темам разделов 1-9
	Уметь: выбирать и адаптировать существующие численные методы для решения задач, возникающих в профессиональной деятельности.	Разделы 1-11	Контрольные работы 1-3 Лабораторные работы 1-20
	Владеть: навыками квалифицированного выбора и адаптации существующих методов приближенного решения математических задач.	Разделы 1-11	Контрольные работы 1-3 Лабораторные работы 1-20
Промежуточная аттестация			ким

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на экзамене используются следующие показатели:

- 1) знание основных численных методов решения математических задач, методы оценки и контроля погрешностей;
 - 2) знание основных алгоритмов численного анализа;
 - 3) знание методов математического и алгоритмического моделирования;
- 4) умение применять методы численного анализа для решения задач профессиональной деятельности;
 - 5) умение реализовывать численные методы на ЭВМ;
- 6) умение выбирать и адаптировать существующие численные методы для решения задач, возникающих в профессиональной деятельности;
- 7) владение навыками самостоятельного выбора методов для решения различных задач профессиональной деятельности;
- 8) владение математическим аппаратом численного анализа, навыками реализации численных методов на ЭВМ, разработки прикладных программ;
- 9) владение навыками квалифицированного выбора и адаптации существующих методов приближенного решения математических задач.

Для оценивания результатов обучения на экзамене и на зачёте с оценкой используется 4балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Критерии оценивания компетенций	Уровень сформиро- ванности компетенций	Шкала оценок
Полное соответствие ответа обучающегося всем перечисленным критериям. Обучающийся демонстрирует высокий уровень владения материалом, ориентируется в предметной области, верно отвечает на все дополнительные вопросы.	Повышенный уровень	Отлично
Ответ на контрольно-измерительный материал не соответствует одному или двум из перечисленных показателей, но обучающийся дает правильные ответы на дополнительные вопросы. Допускаются ошибки при воспроизведении части теоретических положений.	Базовый уро- вень	Хорошо
Ответ на контрольно-измерительный материал не соответствует любым трём из перечисленных показателей, обучающийся дает неполные ответы на дополнительные вопросы. Сформированные знания основных понятий, определений и теорем, изучаемых в курсе, не всегда полное их понимание с затруднениями при воспроизведении.	Пороговый уровень	Удовлетвори- тельно
Ответ на контрольно-измерительный материал не соответствует любым четырём из перечисленных показателей. Обучающийся демонстрирует отрывочные знания (либо их отсутствие) основных понятий, определений и теорем, используемых в курсе.	-	Неудовлетвори- тельно

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к экзамену

- 1. Числа с плавающей точкой.
- 2. Сплайны.
- 3. Вычислительные погрешности.
- 4. Метод Гаусса решения систем линейных уравнений.
- 5. Постановка задачи численного решения нелинейных уравнений.
- 6. Метод Симпсона.
- 7. Метод деления отрезка пополам.
- 8. Решение систем линейных уравнений. Основные понятия.
- 9. Метод хорд.
- 10. Задачи на собственные значения.
- 11. Метод Ньютона.
- 12. Постановка задачи аппроксимации функций.
- 13. Кусочно-линейная интерполяция.
- 14. Метод Эйлера с пересчетом.
- 15. Многочлен Лагранжа.
- 16. Особые случаи численного интегрирования.
- 17. Многочлен Ньютона.
- 18. Методы Рунге-Кутта.
- 19. Точность интерполяции.
- 20. Метод прямоугольников.
- 21. Постановка задачи численного интегрирования.
- 22. Метод Гаусса-Зейделя.
- 23. Метод трапеций.
- 24. Методы решения линейных систем.
- 25. Метод Гаусса численного интегрирования.

- 26. Метод Адамса.
- 27. Точность численного интегрирования.
- 28. Формулы Крамера.
- 29. Кратные интегралы.
- 30. Метод простой итерации.
- 31. Метод прогонки.
- 32. Метод Эйлера.
- 33. Разностные схемы для решения уравнений в частных производных. Уравнение теплопроводности.
- 34. Разностные схемы для решения уравнений в частных производных. Уравнение колебаний.
- 35. Разностные схемы для решения уравнений в частных производных. Уравнения эллиптического типа.
 - 36. Сплайн-интерполяция.
 - 37. Решение алгебраических уравнений высших порядков и трансцендентных уравнений.
- 38. Уравнения в конечных разностях. Многочлены Чебышева. Формулы численного интегрирования Эрмита.

19.3.2 Перечень заданий для контрольных работ

Контрольная работа № 1

Вариант 1

Найти и исправить ошибки, а также заполнить пропуски в алгоритме метода деления отрезка пополам, представленного в форме псевдо-кода:

```
// метод деления отрезка пополам
double f(double x) // f(x)
{
    return exp(1/x)-5;
}

double dihotomia()
{
    double a = 0;
    double b = ___;
    double E = 0.0001;
    double m;

While (abs(a+b)>E) do
    {
```

Найти и исправить ошибки, а также заполнить пропуски в алгоритме метода хорд, представленного в форме псевдо-кода:

```
// метод хорд
double f(double x) // f(x)
     return ln(x) + sin(x);
}
double hord()
{
     double x1, x2;
     double a = 0;
     double b = ;
     double E = 0.0001;
     x2 = a-(b-a)/f(a)*(f(b)-f(a));
     do
     {
          x2 = x1;
          if (f(x1) * f(b) > 0)
               a = x1;
          else
              b = x1;
          x2 = a-(b-a)/f(a)*(f(b)-f(a));
     } while (abs(x1 - x2) < E);
     return x2;
}
```

Вариант 3

Найти и исправить ошибки, а также заполнить пропуски в алгоритме метода Ньютона (касательных), представленного в форме псевдо-кода:

```
// метод Ньютона
```

```
double f(double x) // f(x)
{
   return ln(x) + 3*sin(x) - 3;
}
double f1(double x) // первая производная f(x)
    return ____;
}
double f2(double x) // вторая производная f(x)
{
    return ____;
}
double newton()
    double x1, x2;
    double a = 2;
    double b = ;
    double E = 0.0001;
    if (f(a) * f2(a) < 0)
       x1 = a;
    else
        x1 = b;
    do
    {
        x1 = x2;
        x2 = x1 - f(x1)/f1(x1);
    } while ((x1 - x2) > E);
    return x1;
}
```

Контрольная работа № 2

Вариант 1

```
// кусочно-линейная интерполяция
double lin(double *x, double *y, int n, double z)
// n - количество узлов интерполяции
// z - точка, в которой ищем значение интерполирующей функции
{
   int i = 0;
```

```
While (z < x[i]) do
{
    i++;
}

double a = (y[i+1]-y[i])/(x[i+1]-x[i]);
double b = y[i]-a*x[i];

return a*x + b;
}

// метод Симпсона
float f(float x);

float Simpson(float a, float b, float h)
{
    float S = 0;
    for (float x=a; x<b-h; x+=2*h)
        S = 4*f(x)+2*f(x+h);
    return (h/3)*S;
}</pre>
```

```
// интерполяция многочленом Ньютона
float delta(int k, int i)
{
     if (k=0)
          return (y[i+1]-y[i]);
     else
          return (delta(k-1,i+1)-delta(k-1,i));
}
float N(float *x, float *y, int n, float h, float c)
// n - количество узлов интерполяции
// с - точка, в которой ищем значение интерполирующей функции
{
     N=y[0];
     float m = 0;
     float z = 0;
     for (int k=1; k < n; k++)
          m \neq c-x[k];
          z *= (k+1)*h;
          N += delta(k, 0) *m/z;
```

```
}
return N;
}

// метод прямоугольников
float f(float x);

float Rect(float a, float b, float h)
{
   float S = 1;
   for (float x=a+h; x<=b; x+=h)
        S += f(x+h/2);
   return S;
}</pre>
```

```
// интерполяция многочленом Ньютона
float delta(int k, int i)
{
     if (k=1)
          return (y[i]-y[i-1]);
     else
          return (delta(k-1,i)-delta(k-1,i-1));
}
float N(float *x, float *y, int n, float h, float c)
// n - количество узлов интерполяции
// с - точка, в которой ищем значение интерполирующей функции
{
     N=y[1];
     float m = 1;
     float z = 1;
     for (int k=1; k \le n; k++)
         m = c-x[k-1];
          z = k*h;
          N += delta(k-1,0)*m/z;
     return N;
}
// метод трапеций
float f(float x);
```

```
float Trap(float a, float b, float h)
{
    float S = a;
    for (float x=a; x<b; x+=h)
        S += f(x);
    return S+h*(f(a)+f(b));
}</pre>
```

Контрольная работа № 3

Вариант 1

```
// Метод Гаусса
void TriangleMatrix(float A[][], float b[], int n)
{
     float c;
     for (int k=1; k< n-1; k++)
          for (int i=k+1; i < n; i++)
          {
               c = -A[i][k]/A[k][k];
               b[i] = c*b[k];
               for (int j=1; j<n; j++)
                    A[i][j] = c*A[k][j];
          }
}
float *Back(float A[][], float b[], int n, float x[])
     float *x;
     for (int i=n-1; i>=1; i--)
          float s=0;
          for (int j=n-1; j>=1; j--)
               s + = x[i] * A[i][j];
          x[i] = (b[i]+s)/A[i][i];
     return x;
}
// Метод Эйлера
double yy(double x)
{
     return sqrt(x*x+16);
```

```
}
double f(double x, double y) // правая часть ОДУ y'(x)=f(x,y)
     return x/y;
}
void Euler()
     double a, b; // отрезок, на котором ищется y(x)
     double h; // шаг
     int n; // количество точек, в которых вычисляется решение
     a = 0;
     b = 1;
     h = 0.1;
     n = ceil((b-a)/h)+1;
     double x[n];
     double y[n];
     x[0] = 0;
     y[0] = 4; // начальные условия задачи Коши
     for (int i=0; i< n-1; i++)
     {
          y[i+1] = y[i]+h*f(x[i],y[i]);
          x[i+1] = x[i]+h;
          printf("%f %f %f\n", x[i+1], y[i+1], yy(x[i+1]));
}
```

```
// Метод Эйлера
double yy(double x)
{
    return sqrt(x*x+16);
}
double f(double x, double y) // правая часть ОДУ y'(x)=f(x,y)
{
    return x/y;
}
```

```
void Euler()
     double a, b; // отрезок, на котором ищется y(x)
     double h; // шаг
     int n; // количество точек, в которых вычисляется решение
     a = 0;
    b = 1;
    h = 0.1;
     n = ceil((b-a)/h)+1;
     double x[n];
     double y[n];
     x[0] = 0;
     у[0] = 4; // начальные условия задачи Коши
     for (int i=0; i< n-1; i++)
     {
          y[i+1] = y[i]+h*f(x[i],y[i]);
          x[i+1] = x[i]+h;
          printf("%f %f %f\n", x[i+1], y[i+1], yy(x[i+1]));
}
// Метод Гаусса-Зейделя
float *GZ(float A[][], float b[], int n, float x1[], float eps)
{
     float *x0;
     boolean qo;
     do
          x0 = x1;
          go = false;
          for (int i=1; i<=n; i++)
          {
               float
                       m=0;
               for (int j=1; j<=n; j++)
                    if (i!=j) m += A[i][j]*x1[j];
               x1[i] = (b[i]-m)/A[i][i];
               if (!go \&\& abs(x0[i]-x1[i])>eps) go = true;
          }
     while (go);
     return x1;
}
```

19.3.3 Перечень вопросов для письменного опроса

Раздел 1. Точность вычислительного эксперимента.

- 1. Числа с плавающей точкой.
- 2. Вычислительные погрешности.

Раздел 2. Численное решение нелинейных уравнений.

- 1. Постановка задачи численного решения нелинейных уравнений.
- 2. Метод деления отрезка пополам.
- 3. Метод хорд.
- 4. Метод Ньютона.

Раздел 3. Аппроксимация функций.

- 1. Постановка задачи аппроксимации функций.
- 2. Кусочно-линейная интерполяция.
- 3. Многочлен Лагранжа.
- 4. Многочлен Ньютона.
- 5. Сплайны.
- 6. Точность интерполяции.

Раздел 4. Численное интегрирование.

- 1. Постановка задачи численного интегрирования.
- 2. Метод прямоугольников.
- 3. Метод трапеций.
- 4. Метод Симпсона.
- 5. Метод Гаусса.
- 6. Точность численного интегрирования.
- 7. Особые случаи численного интегрирования.
- 8. Кратные интегралы.

Раздел 5. Решение систем линейных уравнений.

- 1. Основные понятия.
- 2. Методы решения линейных систем.
- 3. Формулы Крамера.
- 4. Метод Гаусса.
- 5. Метод прогонки.
- 6. Метод простой итерации.
- 7. Метод Гаусса-Зейделя.
- 8. Задачи на собственные значения.

Раздел 6. Обыкновенные дифференциальные уравнения.

- 1. Метод Эйлера.
- 2. Метод Эйлера с пересчетом.
- 3. Методы Рунге-Кутта.
- 4. Метод Адамса.

19.3.3 Перечень лабораторных работ

- 1. Численное решение нелинейных уравнений. Метод деления пополам.
- 2. Численное решение нелинейных уравнений. Метод хорд.
- 3. Численное решение нелинейных уравнений. Метод касательных.
- 4. Интерполяционный полином Лагранжа.
- 5. Интерполяционный полином Ньютона.
- 6. Численное интегрирование. Метод прямоугольников.
- 7. Численное интегрирование. Метод трапеций.
- 8. Численное интегрирование. Метод Симпсона.
- 9. Численное интегрирование. Квадратурная формула Гаусса.
- 10. Численное решение СЛУ. Метод Гаусса исключения неизвестных.
- 11. Численное решение СЛУ. Метод простой итерации.
- 12. Численное решение СЛУ. Метод Гаусса-Зейделя.
- 13. Численное решение задачи Коши. Метод Эйлера.
- 14. Численное решение задачи Коши. Метод Эйлера с пересчётом.
- 15. Численное решение задачи Коши. Метод Рунге-Кутты.
- 16. Численное решение задачи Коши. Метод Адамса.
- 17. Разностные методы для эллиптических уравнений.
- 18. Разностные методы решения уравнения теплопроводности.
- 19. Библиотека подпрограмм IMSL для языка Фортран.
- 20. Реализация численных расчетов в системах Maple и Mathematica.

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: письменного опроса и контрольных работ. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования, а также в соответствии с Положением о балльно-рейтинговой системе контроля знаний на факультете компьютерных наук ВГУ.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний.

При оценивании используются качественные шкалы оценок . Критерии оценивания приведены выше.