МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой физической химии

А.В. Введенский 04.06.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФТД.В.03 Основы термодинамики необратимых процессов

- 1. Шифр и наименование направления подготовки: 04.03.01 Химия
- 2. Профиль подготовки/специализации: Физическая химия.
- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма образования: очно-заочная
- 5. Кафедра, отвечающая за реализацию дисциплины: физической химии
- 6. Составители программы: Зарцын Илья Давидович, д.х.н., проф.
- 7. Рекомендована: НМС химического факультета от 24.05.18, протокол № 5
- 8. Учебный год: 2021 / 2022 Семестр 8

- 9. Цели и задачи учебной дисциплины: Обучить студентов основным положениям термодинамики необратимых процессов, расширить их возможности в применении термодинамических методов к описанию неравновесных систем, необратимых физико-химических и химико-технологических процессов.
- 10. Место учебной дисциплины в структуре ООП:

ФТД. Факультативы. Вариативная часть.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

	Компетенция		Планируемые результаты обучения
Код	Название		
ПК-3	Владение	системой	знать: законы термодинамики необратимых процессов
	фундаментальных		уметь: применять фундаментальные соотношения
	химических понятий	i	физической химии на практике
			иметь навыки: интерпретации экспериментальных
			данных в рамках изученных теоретических моделей

12. Объем дисциплины в зачетных единицах/час в соответствии с учебным планом — 2/72. Форма промежуточной аттестации (зачет/экзамен) – зачет.

13. Виды учебной работы

Вид учебной работы		Трудоемкость (часы)			
		Всего	По семестрам		семестрам
			Сем. 8		
Ауди	торные занятия	32	32		
в том числе:	лекции	32	32		
	практические	-	-		
	лабораторные	-	-		
Самостоятельная работа		40	40		
Форма промежуточной аттестации (зачет – 0 час. / экзамен – 0 час.)		0	0		
	Итого:	72	72		

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины
		1. Лекции
1.1	Обоснование применения термодинамики к необратимым процессам и неравновесным системам.	Введение. Обоснование применения термодинамического метода к неравновесным процессам и системам.
1.2	Методология термодинамики необратимых процессов.	Методология термодинамики необратимых процессов, основанной на гипотезе локального равновесия. Законы сохранения массы, энергии, уравнение баланса энтропии. Диссипативная функция.
1.3	Гомогенные системы. Химическое сродство. Сопряженные химические реакции	Производство энтропии в гомогенных системах и термодинамические потенциалы. Координата химической реакции. Химическое сродство.
1.4	Гетерогенные системы. Электрокинетические явления, мембранные процессы в изотермических и неизотермических системах, термомеханические явления,	Определение гетерогенных систем. Законы сохранения массы и энергии в гетерогенных системах. Неопределенность понятия «теплота» для открытых систем. Различные способы определения теплоты для открытых систем. Баланс энтропии для гетерогенных систем. Поток энтропии и производство энтропии. Диссипативная функция для гетерогенной системы. Термодинамические силы и

	термоосмос.	потоки. Различные типы гетерогенных систем.
1.5	Термодинамика стационарных состояний.	Общий подход к описанию стационарных состояний в термодинамике необратимых процессов. Теорема о минимуме производства энтропии в стационарном состоянии.
1.6	Непрерывные системы. Общий вид законов сохранения. Термодинамическое описание процессов в непрерывных системах.	Непрерывные системы. Общий вид законов сохранения. Дивергенция, градиент. Уравнение баланса энтропии в непрерывных системах.
1.7	Обоснование применения термодинамики к необратимым процессам и неравновесным системам.	Гипотеза локального равновесия, расширенная (локально- неравновесная) необратимая термодинамика. Поток энтропии и производство энтропии.
1.8	Методология термодинамики необратимых процессов.	Термодинамические силы и потоки. Число степеней свободы системы в неравновесном состоянии.
1.9	Гомогенные системы. Химическое сродство. Сопряженные химические реакции	Сопряженные химические реакции, термодинамическое сопряжение и химическая индукция, линейные феноменологические соотношения для сопряженных реакций. Кинетическая трактовка химического сродства. Соотношение Марселина-Де-Донде.
1.10	Гетерогенные системы. Электрокинетические явления, мембранные процессы в изотермических и неизотермических системах, термомеханические явления, термоосмос.	Преобразование диссипативной функции для состояния близкого к равновесию. Электрокинетические явления. Диссипативная функция. Линейные феноменологические соотношения. Стационарное состояние. Соотношения взаимности Онсагера. Перекрестные эффекты. Гетерогенные системы с переносом электричества. Мембранный потенциал, обобщенные числа переноса Гетерогенные системы в неизотермических условиях. Термоосмос. Термомеханические явления.
1.11	Термодинамика стационарных состояний.	Потенциал рассеяния. Обобщение ранее изученных перекрестных явлений в рамках единого формализма термодинамики необратимых процессов.
1.12	Непрерывные системы. Общий вид законов сохранения. Термодинамическое описание процессов в непрерывных системах.	Термодинамические силы и потоки. Диффузия. Термоэлектрические явления. Эффекты Зеебека и Пельтье. Термодиффузия. Эффекты Соре и Дюфура. Разделение изотопов

13.2. Темы (разделы) дисциплины и виды занятий

	. тоше: (расдоле) дледини			ды занятий (часс	OB)		
Nº	Наименование раздела	· ·					
п/п	дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего	
1	Обоснование применения термодинамики к необратимым процессам и неравновесным системам.	4			6	10	
2	Методология термодинамики необратимых процессов.	4			6	10	
3	Гомогенные системы. Химическое сродство. Сопряженные химические реакции	6			6	12	
4	Гетерогенные системы. Электрокинетические явления, мембранные процессы в изотермических и	8			6	14	

	неизотермических					
	системах,					
	термомеханические					
	явления, термоосмос.					
5	Термодинамика	8			8	16
3	стационарных состояний.	O			0	10
	Непрерывные системы.					
	Общий вид законов					
6	сохранения.	2			8	10
"	Термодинамическое				0	10
	описание процессов в					
	непрерывных системах.					
	Итого:	32	-	-	40	72

14. Методические указания для обучающихся по освоению дисциплины

Работа с конспектами лекций, выполнение практических заданий, заданий текущей аттестации.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

a) conce	а) основнал литоратура.		
№ п/п	Источник		
	Пармон В.Н. Термодинамика неравновесных процессов для химиков. Приложения к		
1	химической кинетике, катализу, материаловедению и биологии / В.Н. Пармон - М.:		
	Издательский дом «Интеллект». 2014 472 с.		

б) дополнительная литература:

№ п/п	Источник
2	Пригожин И. Современная термодинамика. От тепловых двигателей до диссипативных структур/ И. Пригожин, Д. Кандепуди, - М.: Мир, 2002 451 с.
3	Бажин Н.М. Термодинамика для химиков / Н.М. Бажин, В.А.Иванченко, В.Н.Пармон. – М.: Химия, 2004 415 с.
4	Агеев Е.П. Неравновесная термодинамика в вопросах и ответах / Е.П. АгеевМ.: УРСС, 2001 135 с.
5	Гленсдорф П. Термодинамическая теория структуры, устойчивости и флуктуаций/ П. Гленсдорф, И.ПригожинМ.:Москва. УРСС, 2003273 с.
6	Эбелинг В. Образование структур при необратимых процессах. Введение в теорию диссипативных структур / В.Эбелинг М.:Москва - Ижевск, 1979 253 с.
7	Хаазе Р. Термодинамика необратимых процессов. / Р.Хаазе М.: Мир, 1967 534 с.
8	Анищенко В.С. Знакомство с нелинейной динамикой /В.С. Анищенко М.: Москва - Ижевск,2002142 с.
9	Трубецков Д.И. Введение в синергетику. Хаос и структуры / Д.И. Трубецков М.:УРСС,2004. – 232 с.
10	Николис Г. Познание сложного / Г.Николис, И. Пригожин М.:Мир,1990342 с.
11	Путь в синергетику/ П.Б. Безручко [и др.] - М.:УРСС, 2005 303 с.
12	Данилов Ю.А. Лекции по нелинейной динамике / Ю.А.Данилов - М.:Постмаркет,2001187с.
13	Справочник по электрохимии / под ред. А.М. Сухотина .— Л. : Химия : Ленингр. отд-ние, 1981 .— 486 с.

в)информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Источник		
15	Научная электронная библиотека — < <u>http://www.elibrary.ru></u>		
16	Электронная библиотека Воронежского государственного университета - http://www.lib.vsu.ru		
17	Официальное электронное излание Химического факультета МГV в Интернет -		

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1	Сборник примеров и задач по электрохимии : учеб. пособие /сост.: А.В. Введенский [и др.] - Воронеж : ИПЦ ВГУ, 2010.

- 17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)
- 18. Материально-техническое обеспечение дисциплины:

Ноутбук, on-line-проектор, лекционная аудитория

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание компетенции (или	Планируемые результаты обучения (показатели достижения заданного	Этапы формирования	ФОС
ее части)	уровня освоения компетенции	компетенции	(средства
	посредством формирования знаний,	(разделы (темы)	оценивания)
	умений, навыков)	дисциплины или	
		модуля и их	
		наименование)	
ПК-3 Владение	Знать: законы термодинамики	1, 2, 5	
системой	необратимых процессов	1, 2, 0	
фундаментальных	Уметь: применять фундаментальные		
химических	соотношения физической химии на	3, 4	Контрольная
понятий	практике		работа
	Иметь навыки: интерпретации		
	экспериментальных данных в рамках	6	
	изученных теоретических моделей		
Промежуточная ат	тестация		Комплект
			вопросов

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Пример:

Для оценивания результатов обучения на экзамене/зачете используются следующие показатели (ЗУНы из 19.1):

- 1) знание учебного материала и владение понятийным аппаратом;
- 2) умение связывать теорию с практикой;
- 3) умение иллюстрировать ответ примерами, фактами, данными научных исследований.

Для оценивания результатов обучения на зачете используется – зачтено, не зачтено Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Оценка	Критерии оценок
	Глубокие знания по всем вопросам билета. Способность находить
Зачтено	решения нестандартных научных задач по обсуждаемой проблеме.
	Понимание сути основных проблем курса. Обоснование ответов.
	Отрывочные знания материала. Слабое владение математическим
Незачтено	аппаратом. Неумение применять полученные знания к анализу
пезачтено	конкретных систем и процессов. Грубые ошибки при решении даже
	простых задач.

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к экзамену (зачету):

- 1. Обоснование применения термодинамического метода к неравновесным процессам и системам.
- 2. Законы сохранения массы, энергии, уравнение баланса энтропии. Диссипативная функция.
- 3. Производство энтропии в гомогенных системах и термодинамические потенциалы. Координата химической реакции. Химическое сродство.
- 4. Определение гетерогенных систем. Законы сохранения массы и энергии в гетерогенных системах.
- 5. Неопределенность понятия «теплота» для открытых систем. Различные способы определения теплоты для открытых систем. Баланс энтропии для гетерогенных систем. Поток энтропии и производство энтропии.
- 6. Диссипативная функция для гетерогенной системы. Термодинамические силы и потоки. Различные типы гетерогенных систем.
- 7. Общий подход к описанию стационарных состояний в термодинамике необратимых процессов. Теорема о минимуме производства энтропии в стационарном состоянии.
- 8. Непрерывные системы. Общий вид законов сохранения. Дивергенция, градиент. Уравнение баланса энтропии в непрерывных системах.
- 9. Гипотеза локального равновесия, расширенная (локально-неравновесная) необратимая термодинамика. Поток энтропии и производство энтропии.
- 10. Термодинамические силы и потоки. Число степеней свободы системы в неравновесном состоянии.
- 11. Сопряженные химические реакции, термодинамическое сопряжение и химическая индукция, линейные феноменологические соотношения для сопряженных реакций.
- 12. Кинетическая трактовка химического сродства. Соотношение Марселина-Де-Донде.
- 13. Преобразование диссипативной функции для состояния близкого к равновесию. Электрокинетические явления. Диссипативная функция.
- 14. Линейные феноменологические соотношения. Стационарное состояние. Соотношения взаимности Онсагера. Перекрестные эффекты.
- 15. Перекрестные эффекты. Гетерогенные системы с переносом электричества. Мембранный потенциал, обобщенные числа переноса.
- 16. Гетерогенные системы в неизотермических условиях. Термоосмос. Термомеханические явления.
- 17. Потенциал рассеяния. Обобщение ранее изученных перекрестных явлений в рамках единого формализма термодинамики необратимых процессов.
- 18. Термодинамические силы и потоки. Диффузия. Термоэлектрические явления. Эффекты Зеебека и Пельтье.
- 19. Термодиффузия. Эффекты Соре и Дюфура. Разделение изотопов.

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме *письменной работы (контрольная)*. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний, позволяющее(ие) оценить степень сформированности умений и навыков. При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.