<u>www.vsu.ru</u> ПВГУ 2.1.02 – 2017

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой цифровых технологий

С.Д.Кургалин 30.06.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.04 МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЕСТЕСТВОЗНАНИИ

1. Код и наименование направления подготовки/специальности:

02.03.01 Математика и компьютерные науки

- 2. Профиль подготовки/специализация: квантовая теория информации
- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины: цифровых технологий
- **6. Составители программы:** Туровский Ярослав Александрович, кандидат медицинских наук, доцент
- **7. Рекомендована:** Научно-методическим советом факультета компьютерных наук (протокол № 6 от 25.06.2018)

- 9. Цели и задачи учебной дисциплины: ознакомление слушателей с современным положением дел в области применения современных математических методов в различных разделах естествознания. Подготовка высококвалифицированных специалистов, которые владеют широким арсеналом методов математического моделирования (в том числе, новейших), используемых при исследовании систем естествознания, перспективных и важных для высоких технологий.
- **10. Место учебной дисциплины в структуре ООП:** дисциплина относится к вариативной части блока Б1. Для успешного освоения дисциплины необходимо предварительное изучение курсов «Математический анализ», «Теория вероятностей», «Технологии программирования».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Компетенция		Планируом но розультать обущения	
Код	Название	Планируемые результаты обучения	
ПК-1	Способность к определению общих форм и закономерностей отдельной предметной области.	знать: теоретические основы новейших математических методов; уметь: эффективно применять математический аппарат для решения прикладных задач; владеть: навыком практического применения различных математических методов для решения прикладных задач.	
ПК-6	Способность передавать результат проведенных физикоматематических и прикладных исследований в виде конкретных рекомендаций, выраженных в терминах предметной области изучавшегося явления.	знать: способы применения математических методов в естественных науках; принципы проектирования моделей различных процессов для естественных наук; уметь: обосновывать применимость выбранных моделей; владеть: способами представления результатов исследований в виде рекомендаций для практического использования.	

12. Объем дисциплины в зачетных единицах/час — 4/144.

Форма промежуточной аттестации: 6 семестр – экзамен.

13. Виды учебной работы

	Трудоемкость (часы)		
Dua vivolino i policari	Всего	По семестрам	
Вид учебной работы		6 сем.	
Аудиторные занятия	66	66	
в том числе: лекции	34	34	
практические	16	16	
лабораторные	16	16	
Самостоятельная работа	42	42	
Экзамен	36	36	
Итого:	144	144	

13.1. Содержание дисциплины

п/п	Наименование раздела дисцип-	Содержание раздела дисциплины				
	1. Лекции					
1.1	Математические методы в есте- ствознании, задачи курса, мето- дология и значение курса	Предмет «Математические методы в естествознании». Всеобщие, общенаучные и частнонаучные методы. Классификация естественных наук. Структура естественнонаучного познания. Математические методы обработки результатов наблюдений. Функциональная и корреляционные зависимости. Построение уравнений регрессии методом наименьших квадратов. Построение моделей регрессии с использованием EXCEL.				
1.2	Математические методы в науках о неживой природе.	Математические методы в физике. Построение и решение дифференциальных уравнений в приложении к физическим задачам: движение в среде с трением, стационарный тепловой поток, задача об остывании жидкости, задача от остывания нагретого тела, истечение жидкости из сосуда, водяные часы, точность маятниковых часов, циклоидальные часы, задача о брахистохроне, задача поиска, модели боевых действий. Основные уравнения математической физики: волновое, уравнение теплопроводности, уравнение Лапласа и Пуассона. Физические задачи, приводящие к дифференциальным уравнениям в частных производных. Колебательные процессы, теплопроводность и диффузия, стационарные процессы. Понятия о краевых задачах и корректности их постановок. Математическая классификация уравнений второго порядка: гиперболический, параболический и эллиптический тип уравнений. Однородное, неоднородное, линейное, квазилинейное. Дифференциальные уравнения в химии: расчет скоростей химических реакций.				
1.3	Математические методы в науках о живой природе.	Математические методы в биологии. Модели роста численности популяций, модель экспоненциального роста, модель гиперболического роста, логистический рост (уравнение Ферхюльста). Качественные методы решения дифференциальных уравнений. Фазовая плоскость и фазовые портреты системы линейных дифференциальных уравнений, метод изоклин. Модель «хищник-жертва». Задача математической теории эпидемий.				

1.4	Математические методы социо- логии.	Задача об эффективности рекламы, задача о спросе и предложении.			
	2. Лабораторные и практические занятия				
2.1	Математические методы в есте- ствознании, задачи курса, мето- дология и значение курса	Предмет «Математические методы в естествознании». Всеобщие, общенаучные и частнонаучные методы. Классификация естественных наук. Структура естественнонаучного познания. Математические методы обработки результатов наблюдений. Функциональная и корреляционные зависимости. Построение уравнений регрессии методом наименьших квадратов. Построение моделей регрессии с использованием EXCEL.			
2.2	Математические методы в науках о неживой природе.	Математические методы в физике. Построение и решение дифференциальных уравнений в приложении к физическим задачам: движение в среде с трением, стационарный тепловой поток, задача об остывании жидкости, задача от остывания нагретого тела, истечение жидкости из сосуда, водяные часы, точность маятниковых часов, циклоидальные часы, задача о брахистохроне, задача поиска, модели боевых действий. Основные уравнения математической физики: волновое, уравнение теплопроводности, уравнение Лапласа и Пуассона. Физические задачи, приводящие к дифференциальным уравнениям в частных производных. Колебательные процессы, теплопроводность и диффузия, стационарные процессы. Понятия о краевых задачах и корректности их постановок. Математическая классификация уравнений второго порядка: гиперболический, параболический и эллиптический тип уравнений. Однородное, неоднородное, линейное, квазилинейное. Дифференциальные уравнения в химии: расчет скоростей химических реакций.			
2.3	Математические методы в науках о живой природе.	Математические методы в биологии. Модели роста численности популяций, модель экспоненциального роста, модель гиперболического роста, логистический рост (уравнение Ферхюльста). Качественные методы решения дифференциальных уравнений. Фазовая плоскость и фазовые портреты системы линейных дифференциальных уравнений, метод изоклин. Модель «хищник-жертва». Задача математической теории эпидемий.			
2.4	Математические методы социо- логии.	Задача об эффективности рекламы, задача о спросе и предложении.			

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы	Виды занятий (часов)					
П/П	(раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятель- ная работа	Всего	
1	Математические методы в естествознании, задачи курса, методология и значение курса	2	0	0	0	2	
2	Математические методы в науках о неживой природе.	12	6	6	18	42	

3	Математические методы в науках о живой природе.	14	6	6	20	46
4	Математические методы со- циологии.	6	4	4	4	18
	Итого:	34	16	16	42	108

14. Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины рекомендуется использовать следующие средства:

- рекомендуемую основную и дополнительную литературу;
- методические указания и пособия;
- контрольные задания для закрепления теоретического материала;
- электронные версии учебников и методических указаний для выполнения практических работ.

Форма организации самостоятельной работы: подготовка к аудиторным занятиям; выполнение домашних заданий; выполнение контрольных работ.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Поршнев, С.В. Компьютерное моделирование физических процессов в пакете MATLAB. + CD [Электронный ресурс] : . — Электрон. дан. — СПб. : Лань, 2011. — 727 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=650

б) дополнительная литература:

№ п/п	Источник
2	Концепции современного естествознания : [учебное пособие для студ. гуманитар. и экон. специальностей вузов] / [С.И. Самыгин (рук.) и др.] ; под общ. ред. С.И. Самыгина .— Изд. 11-е .— Ростов н/Д : Феникс, 2009 .— 412, [1] с.
3	Дулов В.Г. Математическое моделирование в глобальных проблемах естествознания / В.Г. Дулов, В.М. Белолипецкий, В.А. Цибарев; Рос. акад. наук, Сиб. отд-ние, Ин-т вычисл. моделирования, СПетерб. гос. ун-т; под ред. В.В. Шайдурова.— Новосибирск: Изд-во Сиб. отд-ния РАН, 2005.— 247 с.
4	Амелькин В.В. Дифференциальные уравнения в приложениях / В.В. Амелькин. — М. : Наука : Физматлит, 1987 .— 157, [1] с.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
5	www.lib.vsu.ru –3HБ ВГУ
6	http://www.math.msu.su/department/opu/sites/default/files/attached_files/practica46.pdf
7	http://alexlarin.net/Ucheb/milkov.pdf
	Ризниченко Г.Ю. Математическое моделирование в биологии. – Биология Математическая –
8	Популяционная динамика – Экология математическая
	http://www.library.biophys.msu.ru/MathMod/

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1	Поршнев, С.В. Компьютерное моделирование физических процессов в пакете MATLAB. + CD [Электронный ресурс] : . — Электрон. дан. — СПб. : Лань, 2011. — 727 с. — Режим
	доступа: http://e.lanbook.com/books/element.php?pl1_id=650

- 17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости) программное обеспечение компьютерных классов.
- **18. Материально-техническое обеспечение дисциплины:** лекционная аудитория, оборудованная мультимедийным проектором, компьютерный класс с необходимым программным обеспечением.

19. Фонд оценочных средств:

19.1 Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содер- жание компе- тенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наиме-	ФОС (средства оценива- ния)
	Знать: теоретические основы новейших математических методов.	нование) Раздел 1-4	Лабораторные работы 1-7
ПК-1	Уметь: эффективно применять математический аппарат для решения прикладных задач.	Раздел 1-4	Лабораторные работы 1-7
	Владеть: навыком практического применения различных математических методов для решения прикладных задач.	Раздел 1-4	Лабораторные работы 1-7
	Знать: способы применения математических методов в естественных науках; принципы проектирования моделей различных процессов для естественных наук.	Раздел 1-4	Лабораторные работы 1-7
ПК-6	Уметь: обосновывать применимость выбранных моделей.	Раздел 1-4	Лабораторные работы 1-7
	Владеть: способами представления результатов исследований в виде рекомендаций для практического использования.	Раздел 1-4	Лабораторные работы 1-7
	Промежуточная аттестация		ким

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на экзамене используются следующие показатели:

- 1) знание теоретических основ новейших математических методов;
- 2) знание способов применения математических методов в естественных науках; принципов проектирования моделей различных процессов для естественных наук;
 - 3) умение эффективно применять математический аппарат для решения прикладных задач;
 - 4) умение обосновывать применимость выбранных моделей;
- 5) владение навыком практического применения различных математических методов для решения прикладных задач;
- 6) владение способами представления результатов исследований в виде рекомендаций для практического использования.

Для оценивания результатов обучения на экзамене используется 4-балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Критерии оценивания компетенций	Уровень сформиро- ванности компетенций	Шкала оценок
Полное соответствие ответа обучающегося всем перечисленным критериям. Обучающийся демонстрирует высокий уровень владения материалом, ориентируется в предметной области, верно отвечает на все дополнительные вопросы.	Повышенный уровень	Отлично
Ответ на контрольно-измерительный материал не соответствует одному или двум из перечисленных показателей, но обучающийся дает правильные ответы на дополнительные вопросы. Допускаются ошибки при воспроизведении части теоретических положений.	Базовый уро- вень	Хорошо
Ответ на контрольно-измерительный материал не соответствует любым трём из перечисленных показателей, обучающийся дает неполные ответы на дополнительные вопросы. Сформированные знания основных понятий, определений и теорем, изучаемых в курсе, не всегда полное их понимание с затруднениями при воспроизведении.	Пороговый уровень	Удовлетвори- тельно
Ответ на контрольно-измерительный материал не соответствует любым четырём из перечисленных показателей. Обучающийся демонстрирует отрывочные знания (либо их отсутствие) основных понятий, определений и теорем, используемых в курсе.	I	Неудовлетвори- тельно

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к экзамену

- 1. Математические методы обработки результатов наблюдений. Функциональная и корреляционные зависимости. Построение уравнений регрессии методом наименьших квадратов.
- 2. Построение и решение дифференциальных уравнений в приложении к физическим задачам: движение в среде с трением, стационарный тепловой поток, задача об остывании жидкости.
- 3. Построение и решение дифференциальных уравнений в приложении к физическим задачам: задача от остывания нагретого тела, истечение жидкости из сосуда.
- 4. Основные уравнения математической физики: волновое, уравнение теплопроводности, уравнение Лапласа и Пуассона.

- 5. Физические задачи, приводящие к дифференциальным уравнениям в частных производных. Колебательные процессы, теплопроводность и диффузия, стационарные процессы.
 - 6. Дифференциальные уравнения в химии: расчет скоростей химических реакций.
- 7. Математические методы в биологии. Модели роста численности популяций, модель экспоненциального роста, модель гиперболического роста, логистический рост (уравнение Ферхюльста).
- 8. Качественные методы решения дифференциальных уравнений. Фазовая плоскость и фазовые портреты системы линейных дифференциальных уравнений, метод изоклин.
 - 9. Модель «хищник-жертва». Задача математической теории эпидемий.
 - 10. Задача об эффективности рекламы, задача о спросе и предложении.

19.3.2 Перечень лабораторных работ

- 1. Построение уравнений регрессии методом наименьших квадратов.
- 2. Движение в среде с трением.
- 3. Задача от остывания нагретого тела.
- 4. Истечение жидкости из сосуда.
- 5. Модели роста численности популяций.
- 6. Модель «хищник-жертва».
- 7. Выявление различий в распределении признака. Критерий Пирсона. Критерий Колмогорова-Смирнова.

Типовое задание для лабораторной работы

Лабораторная работа № 4 «Истечение жидкости из сосуда»

Цель работы: развитие навыков построения моделей физических явлений и процессов.

Отчёт о работе проводится в виде собеседования и заключается в демонстрации работы программы, объяснении принципов построения модели и основ теории, использованных для решения задачи.

Критерии оценки: для получении оценки «зачтено» необходимо показать высокий уровень владения теоретическим материалом, уметь объяснить принцип работы написанной программы, верно ответить на дополнительные вопросы.

Задание: В боковой стенке широкого сосуда с водой, заполненном до высоты H = 4 м, имеется небольшое отверстие, расположенное на расстоянии h = 40 см от поверхности воды в сосуде. Найдите дальность полета I струи воды, вытекающей из отверстия. Постройте модель описанного явления при заданных условиях. При каком положении отверстия $h = h_{max}$ дальность полета будет максимальной?

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: письменного опроса и контрольных работ. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования, а также в соответствии с Положением о балльно-рейтинговой системе контроля знаний на факультете компьютерных наук ВГУ.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний.

При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.