МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Def.

Заведующий кафедрой Аналитической химии Селеменев В.Ф.

15.06.20 18 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ <u>М1.В.ДВ.04.01 Компьютерное моделирование химических структур</u>

Код и наименование дисциплины в соответствии с учебным планом

1. Шифр и наименование направления подготовки/специальности:

04.04.01 Химия

- 2. Профиль подготовки/специализация: Органическая химия
- 3. Квалификация (степень) выпускника: магистр
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины: кафедра аналитической

химии

- 6. Составители программы: проф., д.х.н., Бутырская Е.В.
- 7. Рекомендована: НМС химического факультета Протокол №5 от 24.05. 2018

отметки о продлении вносятся вручную)	

8. Учебный год:2019/2020 Семестр(ы): ___3____

9 Цели и задачи учебной дисциплины

Основной <u>целью</u> курса является формирование знаний и умений в области использования программы Gaussian для решения различных химических проблем методами квантовой химии.

Задачи курса:

- 1. Изучить теоретические основы методов квантово-химического моделирования;
- 2. Изучить интерфейс программ Gaussian и GaussView.
- 3. Овладеть практическими приемами решения типовых задач программы программы Gaussian.
- **10. Место учебной дисциплины в структуре ООП**: (блок Б1,базовая или вариативная часть, к которой относится дисциплина; требования к входным знаниям, умениям и навыкам; дисциплины, для которых данная дисциплина является предшествующей))
- М1. Вариативная часть. Дисциплина по выбору.
- 11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

	Компетенция	Планируемые результаты обучения
Код	Название	
ОПК- 2	Владение современными компьютерными технологиями планировании исследований, получение и обработка результатов научных экспериментов, сбор, обработка, хранение, представления в передаче научной информации	знать: 1. Основные положения теории химической связи (приближение Борна-Оппенгеймера, методы решения электронного и колебательного уравнений Шредингера, основные методы квантовой химии) 2. Теоретические основы неэмпирических и полуэмпирических методов расчета молекулярных систем. 3. Смысл аббревиатуры наборов базисных функций. 4. Методы расчета основных характеристик молекулярных систем (заряды на атомах по Малликену, поляризуемость, термодинамические функции состояний, частоты колебательных и электронных переходов, параметры переходных
		состояний, химические сдвиги). уметь: 1. Проводить квантово-химические расчеты электронной и колебательной структуры химических соединений. 2. Рассчитывать основные характеристики молекулярной и электронной структуры химических соединений. 3. Интерпретировать рассчитанные свойства молекул с позиций квантовой химии. владеть: 1. Навыками моделирования структуры и свойств молекул методами квантовой химии. 2. Методикой работы в пакете программ Gaussian и GaussView. 3. Методикой анализа и использования получаемой из квантово-химических расчетов информацией.

12. Объем дисциплины в зачетных единицах/час.(в соответствии с учебным планом) — 108 час/3 ЗЕТ.

Форма промежуточной аттестации(зачет/экзамен) зачет.с оценкой

13. Виды учебной работы

	Трудоемкость			
Вид учебной работы			По семестрам	
элд у тооттол рассты	Всего	№ семестра	3 семестр	
Аудиторные занятия			54	
в том числе: лекции				
практические	18		18	
лабораторные	36		36	
Самостоятельная работа	54		54	
Форма промежуточной аттестации (зачет – 0 час. / экзамен –час.)	0			
Итого:	108		108	

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины
	2. Г	Ірактические занятия
2.1	Предмет компьютерное моделирование химических структур. Характеристики современных программных комплексов расчета структуры и свойств молекул	1. Характеристика современных программных комплексов: Hyperchem, Mopac, Gaussian, Gamess и др. Возможности программы Gaussian для расчета структуры и свойств атомномолекулярных систем (AMC).
2.2	Методы квантовой химии в программе Gaussian. Основы практической работы с программами Gaussian и GausView.	2. Разделение электронного и ядерного движений в молекуле. Решение электронного уравнения Шредингера. Методы Хартри, Хартри-Фока, Хартри-Фока Рутана. Метод молекулярных орбиталей. 3. Наборы базисных функций программы Gaussian: Минимальный базисный набор, валентно-расщепленные наборы, наборы с поляризационными функциями, диффузные функции. 4,5. Краткая характеристика методов расчета электронной структуры молекул программы Gaussian: метод МО ЛКАО, полуэмпирические методы, методы аb initio, метод функционала плотности. 6. Задание исходной конфигурации в главном окне программы Gaussian. Сheckpoint файл, секция выбора маршрута. Секция молекулярной спецификации: задание заряда и мультиплетности рассчитываемой системы, способы задания начальной структуры молекулы. Z- матрица. 7. Понятие заряд на атоме по Малликену. Методы расчета электронной плотности, порядков связей, зарядов на атомах, поляризуемости молекулярных систем. Метод молекулярной механики. Ключевые слова программы Gaussian.

8. Поверхность потенциальной энергии Классификация многоатомной системы. ППЭ. Нормальные стационарных точек на колебания. Энергия нулевых колебаний (ZPE). химической реакции. краткая характеристика метода молекулярной динамики. 9. Расчет спектров ЯМР в программе Gaussian, метод GIAO. Эффекты сольватации.

3. Лабораторные работы

3.2 Методы квантовой химии в программе Gaussian. Основы практической работы с программами Gaussian и GausView.

1 Рабочий стол программ Gaussian и Gaussview. Назначение кнопок и окон программ, главное окно Gaussian. Построение программы начальных молекулярных структур с помощью программы Gausview.2 Расчет электронной энергии молекулы.3 Контрольная работа 1: Построение молекулярных электронной структур, расчет энергии молекулы. 4. Ключевое слово "optimization". Опции процедуры "optimization".5 Расчет энергий связей молекулярной структуры.6 Контрольная работа 2: расчет энергий связей молекулярной структуры. Построение 7 молекулярных орбиталей двух- и трехатомных молекул.8 Контрольная работа 3: построение молекулярных орбиталей двух- и трехатомных молекул. 9 Расчет порядков связей в молекулах 10 Сканирование поверхности углеводородов. потенциальной энергии.11 Контрольная работа 4 " порядков Расчет связей молекулах, поверхности потенциальной сканирование энергии ".12 Расчет спектров ЯМР.13 Расчет ИК молекулярных спектров систем.14 Расчет термодинамических функций состояния молекулярных систем.15 Контрольная работа 5: расчет ИК спектров и термодинамических свойств молекул. 16 Расчет пути химической реакции.17. Контрольная работа 6 по теме "Расчет спектров ЯМР ".18. Итоговая контрольная работа 7.

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы	Виды занятий (часов)				
п/п	(раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
1	Предмет компьютерное моделирование химических структур. Характеристики современных программных комплексов расчета структуры и свойств молекул		2	-	10	12
2	Методы квантовой химии		16	36	44	96

в программе С Основы практ работы с прогр Gaussian и Gaus\	гической раммами				
Итого:		18	36	54	108

14. Методические указания для обучающихся по освоению дисциплины Работа с конспектами практических заданий, использование интернет ресурсов, выполнение лабораторных работ.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник		
	Степанов, Николай Федорович. Квантовая механика и квантовая химия :		
1 учебник и практикум для академического бакалавриата / Н.Ф.Степа			
	М. : Юрайт, 2018 Ч. 1 .— 2-е изд., испр. и доп. — 232.		
	Степанов, Николай Федорович. Квантовая механика и квантовая химия :		
2	учебник и практикум для академического бакалавриата / Н.Ф.Степанов .—		
	М. : Юрайт, 2018 Ч. 2 .— 2-е изд., испр. и доп. — 282.		

б) дополнительная литература:

<u> Hononinini</u>	ополнительная литература.				
№ п/п	Источник				
2	Foresman J.B. Exploring Chemistry with Electronic Structure Methods / J.B				
	Foresman., A.E. Frisch. — Pittsburgh, PA: Gaussian, 2003. — 111 p				
	Бутырская, Е.В. Компьютерная химия: основы теории и работа с				
3	программами Gaussian и GaussView / Е.В. Бутырская .— М. : СОЛОН-				
	ПРЕСС, 2011 .— 218 с.				
4	Соловьев М.Е. Компьютерная химия / М.Е. Соловьев, М.М. Соловьев. — М.				
4	: СОЛОН-Пресс, 2005 . — 535 с.				
5	Кларк Т. Компьютерная химия: пер. с англ. / Т. Кларк М. : Мир, 1990. –				
3	383 c.				
6	Минкин В.И. Теория строения молекул / В.И. Минкин, Б.Я. Симкин, Р.М.				
0	Мигяев. – Ростов н/Д. : Феникс, 1997 – 550 с.				
7	Попл Д.А. Квантово химические модели / Д.А. Попл // Успехи физ. наук. –				
/	2002. – T. 172, №3. – C. 349-356.				
	Кон В. Электронная структура вещества – волновые функции и				
8	функционалы плотности / В. Кон // Успехи физ. наук. – 2002. – Т. 172, № 3.				
	– C. 336-349.				

в)информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Ресурс
1.	http://www.gaussian.com
2.	http://www2.sscc.ru/PPP/Gaus-Dscr.htm
3.	http://ru.wikipedia.org/wiki/Квантовая_химия
4.	http://www.qchem.ru/
5.	http://www.xumuk.ru/encyklopedia/1946.html

- * Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы
- **16.** Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
	Специализированный компьютерный класс для выполнения студентами
1	работ по дисциплине «Компьютерное моделирование химических
	структур», включающий 12 рабочих компьютеров на основе Pentium 4;
2	Программный продукт Gaussian03 Rev. C.02; программный продукт
2	Gaussview 3.09
	Компьютерная химия : учебно-методическое пособие для вузов : [для студ.
	5 к. очной формы обуч. хим. фак. специальности 020101 - Химия] /
3	Воронеж. гос. ун-т ; сост.: Е.В. Бутырская, Л.С. Нечаева .— Воронеж :
	Издательско-полиграфический центр Воронежского государственного
	университета, 2011 .— 27 с. : ил. — Библиогр.: с. 27.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

1.Компьютерная химия [Электронный ресурс] : учебно-методическое пособие для вузов : [для студ. 5 к. очной формы обуч. хим. фак. специальности 020101 - Химия] / Воронеж. гос. ун-т ; сост.: Е.В. Бутырская, Л.С. Нечаева .— Электрон. текстовые дан. — Воронеж : Издательско-полиграфический центр Воронежского государственного университета, 2011 .— Загл. с титул. экрана .— Электрон. версия печ. публикации .— Свободный доступ из интрасети ВГУ .— Текстовый файл .— Windows 2000 ; Adobe Acrobat Reader.

2. Интерактивное взаимодействие с суперкомпьютером ВГУ.

18. Материально-техническое обеспечение дисциплины:

(при использовании лабораторного оборудования указывать полный перечень, при большом количестве оборудования можно вынести данный раздел в приложение к рабочей программе)

Специализированный компьютерный класс для выполнения студентами практических и лабораторных работ по дисциплине «Компьютерное моделирование химических структур», включающий 12 рабочих компьютеров на основе Pentium 4; программный продукт Gaussian03 Rev. C.02; программный продукт Gaussview 3.09; суперкомпьютер ВГУ.

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и	Планируемые результаты обучения	Этапы формирования	
содержание	(показатели достижения заданного	компетенции (разделы	ФОС*
компетенции	уровня освоения компетенции	(темы) дисциплины или	(средства
(или ее	посредством формирования знаний,	модуля и их	оценивания)
части)	умений, навыков)	наименование)	
ОПК-2	Знать: 1. Основные положения	1. Предмет	Контрольные
	теории химической связи	компьютерное	работы 1-7.
	(приближение Борна-	моделирование	Сдача
	Оппенгеймера, методы решения	химических структур.	лабораторных
	электронного и колебательного	Характеристики	работ 1-10.

	уравнений Шредингера, основные методы квантовой химии) 2. Теоретические основы неэмпирических и полуэмпирических методов расчета молекулярных систем. 3. Смысл аббревиатуры наборов базисных функций. 4. Методы расчета основных характеристик молекулярных систем (заряды на атомах по Малликену, поляризуемость, термодинамические функции состояний, частоты колебательных и электронных переходов, параметры переходных состояний, химические сдвиги).	современных программных комплексов расчета структуры и свойств молекул. 2. Методы квантовой химии в программе Gaussian. Основы практической работы с программами Gaussian и GausView.	Устный опрос на практических занятиях 1-9.
	Уметь: 1. Проводить квантово- химические расчеты электронной и колебательной структуры химических соединений. 2. Рассчитывать основные характеристики молекулярной и электронной структуры химических соединений. 3. Интерпретировать рассчитанные свойства молекул с позиций квантовой химии.	2. Методы квантовой химии в программе Gaussian. Основы практической работы с программами Gaussian и GausView.	Выполнение лаб. раб.№1- 7 Выполнение лаб.раб. 8-10
	Владеть: Методикой работы в пакете программ Gaussian и GaussView. 3. Методикой анализа и использования получаемой из квантовохимических расчетов информацией.	2. Методы квантовой химии в программе Gaussian. Основы практической работы с программами Gaussian и GausView.	Сдача лабораторных работ 1-10. Устный опрос на практических занятиях 1-9
ПК-3	Знать: теоретические основы проведения квантово-химических расчетов на современном компьютерном оборудовании с применением программы Gaussian	1. Предмет компьютерное моделирование химических структур. Характеристики современных программных комплексов расчета структуры и свойств молекул. 2. Методы квантовой химии в программе	Устный опрос на практических занятиях 1-9.

Уметь: проводить анализ и интерпретацию результатов,	Gaussian. Основы практической работы с программами Gaussian и GausView. 2. Методы квантовой химии в программе	Контрольные работы 1-7
полученных на современном компьютерном оборудовании с применением программы Gaussian	Gaussian. Основы практической работы с программами Gaussian и GausView.	
Владеть: навыками проведения научных исследований на на современном компьютерном оборудовании с применением программы Gaussian	2. Методы квантовой химии в программе Gaussian. Основы практической работы с программами Gaussian и GausView.	Сдача лабораторных работ 1-10.
Промежуточная аттестация		КИМ

^{*} В графе «ФОС» в обязательном порядке перечисляются оценочные средства текущей и промежуточной аттестаций.

19.2 Описание критериев и шкалы оценивания компетенций (*результатов обучения*) при промежуточной аттестации

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Полное освоение компетенции. Свободное оперирование программным учебным материалом с использованием сведений из других учебных предметов; умение осознанно и оперативно трансформировать полученные знания для решения проблем в нестандартных ситуациях; проявление целеустремленности, ответственности, познавательной активности, творческого отношения к учению, выполнение заданий творческого характера, высокий уровень самостоятельности и эрудиции. Достаточное освоение компетенции. Полное	Повышенный уровень Базовый	Хорошо
воспроизведение программного учебного материала с несущественными ошибками; применение знаний в знакомой ситуации по образцу. Настойчивость и стремление при овладение программным учебным материалом, оперирование им в знакомой ситуации; наличие единичных несущественных ошибок при описании и самостоятельных действиях; в процессе применения изученного знания; проявление стремления к творческому переносу знаний, организованности, самокритичности.	уровень	
Удолетворительное освоение компетенции. Неполное воспроизведение усвоенного программного учебного	Пороговый уровень	Удовлетвори- тельно

материала; наличие существенных, но устраняемых		
ошибок с помощью преподавателя; неумение		
применить изученное, стремление к преодолению		
трудностей, ситуативное проявление ответственности		
и самокритичности, наличие исправимых ошибок при		
дополнительных (наводящих) вопросах; затруднения в		
понимании отдельных понятий, трудности применение		
изученного преодолимые с помощью учителя,		
проявление волевых усилий, интереса к учению,		
самостоятельности, осмысленность действий и т.п.		
Неудолетворительное освоение компетенции. Полное	_	Неудовлетвори-
незнание материала или отказ без уважительной		тельно
причины, знание о чем идет речь, различение		
правильного и неправильного знания, но неумение		
исправить ошибки при подсказке преподавателя.		

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к зачету с оценкой:

- 1.Предмет компьютерная химия и компьютерное моделирование. Возможности программы Gaussian для расчета свойств молекул.
- 2. Разделение электронного и ядерного движений в молекуле.
- 3. Метод самосогласованного поля.
- 4. Наборы базисных функций.
- 5.Рабочий стол программы GaussView.
- 6.Расчет энергии молекулы для фиксированной конфигурации ядер.
- 7.Электронная плотность, порядки связей, заряды на атомах, поляризуемость.
- 8.Методы программы Gaussian. Методы молекулярной механики.
- 9.Неэмпирические методы квантовой химии. Электронная корреляция.Ограниченный и неорграниченный метод ХФ.
- 10. Теория возмущений Меллера-Плессета (МР). Метод взаимодействия конфигураций.
- 11.Полуэмпирические методы квантовой химии.
- 12. Методы молекулярной динамики.
- 13.Поверхность потенциальной энергии (ППЭ).
- 14. Гессиан. Классификация стационарных точек на ППЭ.
- 15.Задание исходной конфигурации молекулы.
- 16. Переходное состояние. Путь химической реакции.
- 17. Ключевые слова программы.

19.3.2

Перечень практических заданий

- 1. Характеристика современных программных комплексов: Hyperchem, Mopac, Gaussian, Gamess и др. Возможности программы Gaussian для расчета структуры и свойств атомномолекулярных систем (AMC). Неэмпирические методы квантвой химии: Методы Хартри, Хартри-Фока, Хартри-Фока Рутана. Метод молекулярных орбиталей.
- 2. Понятие базисного набора; орбитали Слейтеровского и Гауссового типа. Типы базисных наборов, их аббревиатура.
- 3. Полуэмпирические методы квантовой химии. Краткая характеристика полуэмпирических методов квантовой химии. Приближение нулевого дифференциального перекрывания. Пренебрежение двухатомным дифференциальным перекрыванием: методы MNDO, AM1, PM3.

- 4. Методы учета электронной корреляции. Теория функционала плотности.
- 5. Способы задания исходной конфигурации, Z-матрица.
- 6. Расчеты дипольных моментов и молекулярных поляризуемостей разных порядков. Малликеновский анализ заселенностей; заряды на атомах, порядки связей.
- 7. Понятие поверхности потенциальной энергии и координаты реакции. Гессиан. Расчет ИК спектров молекул.
- 8. Расчет переходных состояний и пути химической реакции.
- 9. Спектры ЯМР.

Перечень лабораторных работ.

Лабораторная работа № 1

Рабочий стол программы Gaussview.

Лабораторная работа № 2

Расчет энергии молекулы фтороводорода.

Лабораторная работа № 3.

Расчет энергии диссоциации двухатомной молекулы и энергии связи многоатомной молекулы.

Лабораторная работа № 4.

Опции директивы optimization.

Лабораторная работа № 5

Построение молекулярных орбиталей двух- и трехатомных молекул.

Лабораторная работа № 6.

Сканирование поверхности потенциальной энергии.

Лабораторная работа № 7.

Расчет порядков связей в молекулах углеводородов.

Лабораторная работа № 8.

Расчет ик спектра молекулы воды и системы Li⁺H₂O.

Лабораторная работа № 9

Расчет пути химической реакции.

Лабораторная работа № 10

Расчет ямр спектров.

19.3.4 Тестовые задания

19.3.4 Перечень заданий для контрольных работ

Контрольная работа №1.

Задание 1. Построить с помощью программы GaussView структуры молекул, указанных преподавателем (по 2 структуры на каждый вариант, всего 5 вариантов). Для построенных структур; - подписать символы элементов шрифтом 24; - указать длины связей между атомами 1 и 2, 3 и 4, 5 и 6, валентный угол; - сохранить структуру как рисунок и вставить ее в Microsoft Word. Задание 2. Рассчитать энергию молекулы, указанной преподавателем (1 молекула на вариант, всего 5 вариантов) методами HF/6-311G, MP2/3-21G, B3LYP/6-31G(d), занести в таблицу значения энергии, дипольного момента, зарядов на атомах по Малликену.

Контрольная работа №2.

Задание 1. Рассчитать энергию связи двухатомных молекул одного класса, указанных преподавателем (по 3 структуры на каждый вариант, всего 5 вариантов) методом MP2/6-31G(D,P). Сравнить длины связей и дипольные моменты в начальных и оптимизированных структурах. Построить график зависимости энергии связи от ее длины.

Контрольная работа №3.

Задание 1. Записать молекулярную орбиталь НОМО молекулы, указанной преподавателем (по 1 молекуле на каждый вариант, всего 5 вариантов) как линейную комбинацию атомных орбиталей (метод Хартри-Фока, базис 3-21G). Задание 2. Построить графическое изображение молекулярной орбитали (указывается преподавателем) атома

водорода с помощью программы GaussView (пункт Surface в меню Results), зарисовать изображение (метод B3LYP, базис 6-31G**), указать оси координат.

Контрольная работа №4.

Задание 1. Выполнить сканирование потенциальной энергии молекулы, указанной преподавателем (по 1 структуре на каждый вариант, всего 5 вариантов). с шагом 0.1 А для изменения межъядерного расстояния от значения R=Re – 0.3 до R=Re + 2, где Re – равновесное межъядерное расстояние (метод B3LYP, базис 6-31G**). Нарисовать потенциальную кривую.

Задание 2. Рассчитать порядки связей в молекуле, указанной преподавателем (по 1 молекуле на каждый вариант, всего 5 вариантов).

Контрольная работа №5.

Задание 1. Рассчитать колебательный спектр молекулы, указанной преподавателем (по 2 структуры на каждый вариант, всего 5 вариантов). Метод B3LYP, базис 6-31G(d,p)). Определить и записать в тетрадь частоту валентного симметричного C-H колебания.

Задание 2. Схематично изобразить ИК спектр рассчитанных молекул.

Задание 3. Какие типы стационарных точек Вы знаете? Как в программе Gaussian отражается информация о типе найденной стационарной точке? Дать формулировку понятий : нормальное колебание, форма нормального колебания.

Контрольная работа №6.

Задание (одинаково для всех вариантов). Согласно экспериментальным данным, химические сдвиги протонов этанола в различных малополярных растворителях расположены области: метильная группа - 1.25 м.д. (CDCl3), 0.96 м.д.(C6D6) метиленовая группа - 3.72 м.д. (CDCl3), 3.34 м.д.(C6D6) химические сдвиги углеродов - в области: метильная группа - 18.41 м.д. (CDCl3), 18.72 м.д. (C6D6) метиленовая группа - 58.28 м.д. (CDCl3), 57.86 м.д. (C6D6) Переберите несколько методов расчетов химических сдвигов - несколько методов DFT и базисных наборов. Одинаково ли хорошо воспроизводятся химические сдвиги углерода и водорода? Как влияет базис на точность расчета химических сдвигов? Проведите расчет с использованием базисного набора, состоящего только из примитивных гауссианов. Насколько точно воспроизводятся характеристики? Предложите способ как можно более точного расчета химических сдвигов.

Контрольная работа №7.

Задание. На суперкомпьютере ВГУ выполнить расчет дипольного момента, поляризуемости, ИК спектра и спектра ЯМР структуры, исследуемой в курсовой работе. Расчет провести для вакуума и в среде растворителя.

19.3.5 Темы курсовых работ

19.3.6 Темы рефератов

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

- Время подготовки ответа при сдаче зачета оценкой в устной форме должно составлять не менее 40 минут (по желанию обучающегося ответ может быть досрочным). Время ответа не более 15 минут.
- При подготовке к устному экзамену экзаменуемый, как правило, ведет записи в листе устного ответа, который затем (по окончании экзамена) сдается экзаменатору.
- При проведении устного экзамена экзаменационный билет выбирает сам экзаменуемый в случайном порядке.
- Экзаменатору предоставляется право задавать обучающимся дополнительные вопросы в рамках программы дисциплины текущего семестра, а также, помимо

теоретических вопросов, давать задачи, которые изучались на практических занятиях.

- Оценка результатов устного аттестационного испытания объявляется обучающимся в день его проведения. При проведении письменных аттестационных испытаний или компьютерного тестирования – в день их проведения или не позднее следующего рабочего дня после их проведения.
- Результаты выполнения аттестационных испытаний, проводимых в письменной форме, форме итоговой контрольной работы или компьютерного тестирования, должны быть объявлены обучающимся и выставлены в зачётные книжки не позднее следующего рабочего дня после их проведения.