МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой аналитической химии /Селеменев В.Ф./ 15.06.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.В.ДВ.02.02 Спектральные методы анализа

Код и наименование дисциплины в соответствии с учебным планом

- 1. Шифр и наименование направления подготовки/специальности: 04.06.01 Химические науки
- 2. Профиль подготовки/специализация: 02.00.02 Аналитическая химия
- 3. Квалификация (степень) выпускника: Исследователь. Преподавательисследователь
- 4. Форма обучения: Очная
- 5. Кафедра, отвечающая за реализацию дисциплины: Кафедра 1002 аналитическая химия
- 6. Составители программы: Васильева Вера Ивановна, д.х.н, профессор, химический факультет, кафедра аналитической химии, e-mail: viv155@mail.ru
- 7. Рекомендована: Научно-методический совет химического факультета Протокол № 5 от 24.05.2018 г.

(наименование рекомендующей структуры, дата, номер протокола,

отметки о продлении вносятся вручную)

8. Учебный год: 2021-2022 гг

Семестр(ы): 7

9. Цели и задачи учебной дисциплины:

Целью преподавания дисциплины является обучение аспирантов теоретическим и практическим основам спектральных методов анализа, используемых в аналитической химии.

Задачи настоящего курса состоят в том, чтобы на основании полученных знаний аспиранты 1. имели практические навыки подготовки проб для проведения атомного эмиссионного, атомно-абсорбционного и молекулярно-абсорбционного анализа, получения (регистрации) спектров и их интерпретации; 2. могли правильно выбрать метод спектрального анализа для конкретного объекта и практически его провести.

- **10. Место учебной дисциплины в структуре ООП**: (блок Б1,базовая или вариативная часть, к которой относится дисциплина; требования к входным знаниям, умениям и навыкам; дисциплины, для которых данная дисциплина является предшествующей))
- Б1. Обязательные дисциплины. Вариативная часть.

Программа курса рассчитана на знания аспирантов, полученные в ходе изучения фундаментальных разделов по проблемам и перспективам развития химии (вариативная часть), аналитической химии (вариативная часть). Овладение практическими навыками по курсу дисциплины «Спектральные методы анализа» поможет в дальнейшем аспирантам эффективно выполнить задания по научно-исследовательской практике (расср.).

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

	Компетенция	Планируемые результаты обучения
Код	Название	Timelinipy emble pecyfibria i bi eey ierinin
УК-1	способность к критическому	знать:
	анализу и оценке	современное состояние науки в областях химии,
	современных научных	·
	достижений, генерированию	методологию комплексных научных исследований
	новых идей при решении	в области спектрального анализа, включая
	исследовательских и	исследования междисциплинарного характера;
	практических задач, в том	теоретические и экспериментальные подходы и
	числе в	методы научно-исследовательской деятельности в
	междисциплинарных	области спектральных методов анализа.
	областях	уметь:
		определить возможные методологические
		проблемы, возникающие в ходе теоретических и
		экспериментальных исследований в области
		спектрального анализа;
		сформулировать цели и задачи научного
		исследования в области спектрального анализа и
		предложить методологию его проведения;
		проектировать исследования комплексного
		характера на основе целостного системного
		научного мировоззрения.
		владеть:
		навыками анализа методологических проблем,
		возникающих при решении исследовательских и

		TROUTHIONIAN ACTOL TO TOUR WASTE T
		практических задач, в том числе в
		междисциплинарных областях;
		навыками критического анализа и оценки
		современных научных достижений и результатов
		деятельности по решению исследовательских и
		практических задач, в том числе в
		междисциплинарных областях.
УК-4	готовность использовать	знать:
	современные методы и	современные научные достижения в области
	технологии научной	химических наук и смежных междисциплинарных
	коммуникации на	областей;
	государственном и	современные прикладные направления в
	иностранных языках	предметной области знания;
	иностранных языках	·
		современные экспериментальные и теоретические
		методы исследования в области химии.
		уметь:
		применять современные научные достижения на
		практике;
		принимать участие в работе российских и
		международных исследовательских коллективов
		по решению научных задач;
		использовать современные методы и технологии
		научной коммуникации на государственном и
		иностранном языках;
		использовать экспериментальные методы
		исследования в области спектрального анализа;
		владеть:
		способностью к критическому анализу и оценке
		современных научных достижений;
		способностью самостоятельно осуществлять
		научно-исследовательскую деятельность в
		предметной области
ОПК-1	способность	1 ' '
OHIK-1		ЗНАТЬ:
	самостоятельно	современные способы использования
	осуществлять научно-	информационно-коммуникационных технологий в
	исследовательскую	выбранной сфере деятельности;
	деятельность в	уметь:
	соответствующей	выбирать и применять в профессиональной
	профессиональной области	деятельности экспериментальные и расчетно-
	с использованием	теоретические методы исследования;
	современных методов	владеть:
	исследования и	навыками поиска (в том числе с использованием
	информационно-	информационных систем и баз банных) и
	коммуникационных	критического анализа информации по тематике
	технологий	проводимых исследований;
		навыками планирования научного исследования,
		ана-лиза получаемых результатов и
		формулировки выводов;
		навыками представления и продвижения
ПК-1	OFFICE STREET	результатов интеллектуальной деятельности.
I IK-I	способность к	знать:
	самостоятельному	основные характеристики электромагнитного
	проведению научно-	излучения, классификацию спектральных методов

исследовательской работы И получению научных результатов. удовлетворяющих установленным требованиям к содержанию диссертаций на соискание ученой степени кандидата наук ПО научной 02.00.02 специальности аналитическая химия

анализа, теоретические основы атомноэмиссионной, молекулярно-абсорбционной спектроскопии, люминесцентного анализа, спектрального локально-распределительного анализа.

уметь:

выбирать оптимальный метод спектрального анализа для проведения качественного и количественного определения веществ в различных объектах: проводить лабораторные исследования с помощью современной спектральной аппаратуры атомно-эмиссионной спектроскопии, спектрофотометров в видимой, УФ и ИК области, проводить структурно-групповой анализ по ИК спектрам и локальнораспределительный анализ растворов электролитов методом лазерной интерферометрии. владеть: методом пламенной фотометрии, атомноабсорбционного анализа, методом спектрофотометрии в видимой и УФ области. методом лазерной интерферометрии.

12. Объем дисциплины в зачетных единицах/час. — 2/72.

Форма промежуточной аттестации -

13. Виды учебной работы

	Трудоемкость			
Вид учебной работы	Всего	По семестрам		
	Boolo	7		
Аудиторные занятия	4	4		
в том числе: лекции				
практические				
лабораторные				
Индивидуальные занятия	4	4		
Самостоятельная работа	68	68		
Форма промежуточной аттестации (зачет – 0 час. / экзамен –час.)				
Итого:	72	72		

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	
		1. Лекции	
1.1	Общие представления о спектральных методах анализа. Атомный эмиссионный анализ	Классификация спектральных методов анализа. Основные характеристики электромагнитного излучения. Шкала электромагнитных волн. Излучение и поглощение спектральных линий. Интенсивность и ширина спектральных линий. Причины	

		уширения спектральных линий. Самопоглощение и самообращение спектральных линий в источниках света. Источники света в эмиссионной спектроскопии. Аналитическое пламя и его характеристики. Электрические дуга и искра. Тлеющий разряд. Лазерные источники. Способы регистрации спектров в эмиссионной спектроскопии. Количественный атомный эмиссионный анализ. Фотометрия пламени.
1.2	Атомный абсорбционный анализ. Молекулярная спектроскопия	Атомно-абсорбционный спектральный анализ (ААСА). Спектральные линии поглощения и аналитический сигнал в ААСА. Принципиальная схема ААСА. Атомизаторы проб. Классификация методов. Молекулярные спектры. Основной закон светопоглощения.
1.3	Микроволновая спектроскопия. Инфракрасная спектроскопия. Спектроскопия комбинационного рассеяния	Микроволновая спектроскопия. Вращательные спектры. Двухатомные и многоатомные молекулы. Техника эксперимента в микроволновой спектроскопии. Структурно-групповой анализ по ИК спектрам. Техника ИК спектроскопии. Количественный анализ по ИК спектрам. Определение структуры молекул по данным комбинационного рассеяния света. Основные узлы приборов для снятия спектров КР.
1.4	Спектроскопия электронных переходов в молекулах. Люминесцентный анализ. Рефрактометрические методы анализа	Электронные спектры и электронная структура двухатомной молекулы. Хромофоры и ауксохромы. Приборы для анализа в видимой и УФ области спектра. Качественный и количественный анализ по УФ спектрам поглощения. Люминесцентный анализ. Классификация явлений люминесценции. Люминесценция дискретных центров. Основные законы люминесценции. Качественный и количественный люминесцентный анализ. Рефрактометрические константы. Рефрактометрия. Интерферометрическая рефрактометрия. Локальнораспределительный анализ растворов электролитов методом лазерной интерферометрии.

13.2. Темы (разделы) дисциплины и виды занятий

NIa			В	виды занятий (час	ов)	
№ п/п			Лабораторны е		Самостоятельная работа	Всего
1.1	Общие представления о спектральных методах анализа, их классификация. Шкала электромагнитных волн.			1	2	3
1.2	Атомный эмиссионный анализ.			1	6	7
1.3	Атомный абсорбционный анализ.			1	6	7
1.4	Молекулярная спектроскопия. Классификация методов. Молекулярные спектры. Микроволновая спектроскопия.				10	10
1.5	Инфракрасная спектроскопия.				8	8
1.6	Спектроскопия комбинационного рассеяния.				5	5
1.7	Спектроскопия электронных переходов в молекулах.				5	5
1.8	Люминесцентный анализ.			1	21	22

1.9	Рефрактометрические			5	7
	методы анализа			9)
	Итого:		4	68	72

14. Методические указания для обучающихся по освоению дисциплины

работа с конспектами лекций, использование интернет ресурсов, выполнение лабораторных работ

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
1.	Струнин, В.И. Атомная спектроскопия / В.И. Струнин ; Струнина Н. Н. ; Байсова Б. Т. — Омск : Омский государственный университет, 2013 .— 104 с. — ISBN 978-5-7779-1653-2 .— <url:http: biblioclub.ru="" index.php?page="book&id=238088">.</url:http:>
2.	Ельяшевич М.А. Атомная и молекулярная спектроскопия / М.А. Ельяшевич. – М.: URSS : Комкнига, 2007. – 415 с.
3.	Бёккер Ю. Спектроскопия = Spektroskopie. Instrumentelle analytik mit atom- und molekülsektrometrie / Ю. Бёккер ; пер. с нем. Л.Н. Казанцевой под ред. А.А. Пупышева, М.В. Поляковой .— Москва : Техносфера, 2009 .— 527 с.
4.	Основы аналитической химии : в 2 т. : учебник : для студ. вузов, обуч. по хим. направлениям / под ред. Ю.А. Золотова .— Москва : Академия, 2014
5.	Спектральные методы анализа: практическое руководство: учебное пособие / В.И. Васильева [и др.]; под ред. В.Ф. Селеменева, В.Н. Семенова. — Санкт-Петербург; Москва; Краснодар: Лань, 2014 .— 412 с.: — www.e.lanbook.com.

б) дополнительная литература:

№ п/п	Источник			
	Основы аналитической химии : в 2 кн. : / Моск. гос. ун-т им. М.В. Ломоносова; под ред.			
6.	Ю.А. Золотова .— М. : Высш. шк., 2004			
	Кн. 2: Методы химического анализа / Н.В. Алов и др.— 2004 .— 503 с.			
7.	Плиев Т.Н. Молекулярная спектроскопия : в 5 т. / Т.Н. Плиев, Владикавказ: Иристон, 2001 Т.5 2002 594 с.			
	Основы аналитической химии : в 2 кн. : / Моск. гос. ун-т им. М.В. Ломоносова; под ред.			
8.	Ю.А. Золотова .— М. : Высш. шк., 2004			
	Кн. 2: Методы химического анализа / Н.В. Алов и др.— 2004 .— 503 с.			
9.	Дробышев А.И. Основы атомного спектрального анализа / А.И.Дробышев. – С-П.: Изд-во С-П. у-та, 1997г 199с.			
10.	Бенуэлл К. Основы молекулярной спектроскопии / К. Бенуэлл М.: Мир, 1985г 384с.			
11.	Орешенкова Е.Г. Спектральный анализ / Е.Г.Орешенкова М.: Высш. школа, 1982г 375с.			
12.	Пешкова В.М. Методы абсорбционной спектроскопии в аналитической химии / В.М.			
12.	Пешкова, В.И. Громова – М.: Высш. школа, 1976 280 с.			
13.	Фритц Дж. Количественный анализ / Дж. Фритц, Г. Шенк. – М.: Мир, 1978 557 с.			
14.	Дорохова Е.Н. Аналитическая химия. Физико-химические методы анализа / Е.Н. Дорохова, Г.В. Прохорова. – М.: Мир, 1991. – 256 с.			
15.	Драго Р. Физические методы в химии / Под ред. О.А.Реутова. – М.: Мир, 1981. – 422с.			
16.	Вилков Л.В. Физические методы исследования в химии. Резонансные и			
10.	электрооптические методы / Л.В. Вилков, Ю.А. Пентин. – М.: Высш. шк., 1989. – 288 с.			
17.	Углянская В.А. ИК спектроскопия ионообменных материалов / В.А. Углянская и др. –			
17.	Воронеж: Изд-во ВГУ, 1989. –208 с.			
18.	Казицына Л.А. Применение УФ, ИК и ЯМР спектроскопии в органической химии / Л.А.			
10.	Казицына Н.Б.Куплетская. – М.: Мир, 1968. – 292с.			
19.	Соложенкин П.М. ЭПР в анализе веществ / П.М. Соложенкин. – Душанбе: Дониш, 1986. – 290c			
20.	Блюменфельд А.А. Применение ЭПР в химии / А.А.Блюменфельд, В.В.Воеводский,			
20.	А.Г.Семенов. – Новосибирск: Изд-во СО АН СССР, 1962. – 240с.			
21.	Гольданский В.И. Эффект Мессбауэра и его применение в химии / В.И. Гольданский. – М.:			
۷۱.	Изд-во Аккад. Наук СССР, 1963. – 83 с.			
22	Сущинский М.М. Спектры комбинационного рассеяния молекул и кристаллов /			
22.	М.М.Сушинский. – М.: Наука, 1969. – 576с.			

23.	Иоффе Б.В. Рефрактометрические методы химии / Б.В. Иоффе. – Л.: Химия, 1983. – 350 с.
24.	Вест Ч. Голографическая интерферометрия / Ч. Вест. – М.: Мир, 1982. – 502 с.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

	discussion become appropriate the problem (administration becomes in the price)
№ п/п	Pecypc
25.	http://www.lib.vsu.ru
26.	http://www.nist.gov/srd/nist35.htm
27.	http://www.ansyco.de/IR-Spektren/
28.	http://www.e.lanbook.com
29.	http://www.chemnet.ru
30.	http://www.chemrar.ru

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1.1	Атомно-эмиссионная спектроскопия : учебно-методическое пособие / Воронеж. гос. ун-т; сост.: О.Ф. Стоянова [и др.] .— Воронеж : ЛОП ВГУ, 2006 .— 63 с.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

ноутбук Aser, мультимедийный проектор EPSON

18. Материально-техническое обеспечение дисциплины:

(при использовании лабораторного оборудования указывать полный перечень, при большом количестве оборудования можно вынести данный раздел в приложение к рабочей программе)

Мерная посуда
Аналитические весы
Сушильный шкаф
Спектрофотометр СФ-46
ИК спектрофотометр Specord-IR-75
ИК спектрофотометр «Инфралюм ФТ-02»
Стилоскоп СЛ-11, СЛ-13
Спектрограф ИСП-28
Микрофотометр МФ-2
Пламенный фотометр ПАЖ-1
Атомно-абсорбционный спектрофотометр
Рефрактометр ИРФ-454

19. Фонд оценочных средств:

Лазерный интерферометр

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и	Планируемые результаты обучения	Этапы формирования	
содержание	(показатели достижения заданного	компетенции	ФОС*
компетенции	уровня освоения компетенции	(разделы (темы)	(средства
(или ее части)	посредством формирования знаний,	дисциплины или	оценивания)
	умений, навыков)	модуля и их	
		наименование)	
УК-1	знать:	1.1. Общие	
	современное состояние науки в	представления о	
	областях химии, включая	спектральных	Устный опрос
	междисциплинарные направления;	методах анализа.	
	методологию комплексных научных	Атомный	

	исследований в области спектрального анализа, включая исследования междисциплинарного характера; теоретические и экспериментальные подходы и методы научно-исследовательской деятельности в области спектральных методов анализа. уметь: определить возможные методологические проблемы, возникающие в ходе теоретических и экспериментальных исследований в области спектрального анализа; сформулировать цели и задачи научного исследования в области спектрального анализа и предложить методологию его проведения;	эмиссионный анализ 1.2. Атомный абсорбционный анализ. Молекулярная спектроскопия 1.3. Микроволновая спектроскопия. Инфракрасная спектроскопия. Спектроскопия комбинационного рассеяния 1.4. Спектроскопия электронных переходов в молекулах. Люминесцентный	
	проектировать исследования комплексного характера на основе целостного системного научного мировоззрения. владеть: навыками анализа методологических проблем, возникающих при решении исследовательских и практических задач, в том числе в междисциплинарных областях; навыками критического анализа и оценки современных научных достижений и результатов деятельности по решению	Люминесцентный анализ. Рефрактометрические методы анализа	
	исследовательских и практических задач, в том числе в междисциплинарных областях.		
УК-4	знать: современные научные достижения в области химических наук и смежных междисциплинарных областей; современные прикладные направления в предметной области знания; современные экспериментальные и теоретические методы исследования в области химии.	1.1. Общие представления о спектральных методах анализа. Атомный эмиссионный анализ 1.2. Атомный абсорбционный анализ.	Устный опрос
	уметь: применять современные научные достижения на практике; принимать участие в работе российских и международных исследовательских коллективов по решению научных задач; использовать современные методы и технологии научной коммуникации на государственном и иностранном языках; использовать экспериментальные	Молекулярная спектроскопия 1.3. Микроволновая спектроскопия. Инфракрасная спектроскопия. Спектроскопия комбинационного рассеяния 1.4. Спектроскопия электронных	
	методы исследования в области спектрального анализа владеть: способностью к критическому анализу и оценке современных научных достижений; способностью самостоятельно осуществлять научно-исследовательскую деятельность в предметной области	электронных переходов в молекулах. Люминесцентный анализ. Рефрактометрические методы анализа	
ОПК-1	знать: современные способы использования	1.1. Общие представления о	Устный опрос

	NHQODWSHINOHHO-KOWWANHINGHINOHHEIA	CUENTUSULULU	
	информационно-коммуникационных	спектральных	
	технологий в выбранной сфере	методах анализа.	
	деятельности;	Атомный эмиссионный анализ	
	уметь:		
	выбирать и применять в	1.2. Атомный	
	профессиональной деятельности	абсорбционный	
	экспериментальные и расчетно-	анализ.	
	теоретические методы исследования;	Молекулярная	
		спектроскопия	
	владеть:	1.3. Микроволновая	
	навыками поиска (в том числе с	спектроскопия.	
	использованием информационных	Инфракрасная	
	систем и баз банных) и критического	спектроскопия.	
	анализа информации по тематике	Спектроскопия	
	проводимых исследований;	комбинационного	
	навыками планирования научного	рассеяния	
	исследования, ана-лиза получаемых	1.4. Спектроскопия	
	результатов и формулировки выводов;	электронных	
	навыками представления и продвижения	переходов в	
	результатов интеллектуальной	молекулах.	
	деятельности.	Люминесцентный	
	долгольности.	анализ.	
		Рефрактометрические	
		методы анализа	
ПК-1	знать:	1.1. Общие	
1 1117- 1			
	основные характеристики	представления о	
	электромагнитного излучения,	спектральных	
	классификацию спектральных методов	методах анализа.	
	анализа, теоретические основы атомно-	Атомный	
	эмиссионной, молекулярно-	эмиссионный анализ	., .
	абсорбционной спектроскопии,	1.2. Атомный	Устный опрос
	люминесцентного анализа,	абсорбционный	
	спектрального локально-	анализ.	
	распределительного анализа.	Молекулярная	
		спектроскопия	
	уметь:	1.3. Микроволновая	
	выбирать оптимальный метод	спектроскопия.	
	спектрального анализа для проведения	Инфракрасная	
	качественного и количественного	спектроскопия.	
	определения веществ в различных	Спектроскопия	
	объектах; проводить лабораторные	комбинационного	
	исследования с помощью современной	рассеяния	
	спектральной аппаратуры атомно-	1.4. Спектроскопия	
	эмиссионной спектроскопии,	электронных	
	спектрофотометров в видимой, УФ и ИК	переходов в	
	области, проводить структурно-	молекулах.	
	групповой анализ по ИК спектрам и	Люминесцентный	
	локально-распределительный анализ	анализ.	
	·	Рефрактометрические	
	растворов электролитов методом		
	лазерной интерферометрии.	методы анализа	
	владеть:		
	методом пламенной фотометрии,		
	атомно-абсорбционного анализа,		
	методом спектрофотометрии в видимой		
		1	
	и УФ области, методом лазерной		
	· · · · · ·		
	и УФ области, методом лазерной		

 $^{^{*}}$ В графе «ФОС» в обязательном порядке перечисляются оценочные средства текущей и промежуточной аттестаций.

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения используются следующие показатели (ЗУНы из 19.1):

- 1) знание учебного материала и владение понятийным аппаратом методов спектрального анализа:
- 2) умение связывать теорию с практикой; применять теоретические знания для решения практических задач;
- 3) умение иллюстрировать ответ примерами, фактами, данными научных исследований;
- 4) умение применять спектральные методы в анализе различных объектов.
- 19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме: устного опроса. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний, степень сформированности умений и навыков.

При оценивании используются количественные шкалы оценок. Критерии оценивания приведены выше.