<u>www.vsu.ru</u> ПВГУ 2.1.02 – 2017

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой цифровых технологий

С.Д.Кургалин 30.06.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.Б.12 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ И ТОПОЛОГИЯ

1. Код и наименование направления подготовки/специальности:

02.03.01 Математика и компьютерные науки

- 2. Профиль подготовки/специализация: для всех профилей
- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины: цифровых технологий
- 6. Составители программы: Залыгаева Марина Евгеньевна, ассистент
- **7. Рекомендована:** Научно-методическим советом факультета компьютерных наук (протокол № 6 от 25.06.2018)
- 8. Учебный год: 2021-2022 Семестр(ы): 8

9.Цели и задачи учебной дисциплины: целями освоения дисциплины являются: формирование математической культуры студента в области геометрии и топологии, начальная подготовка в области алгебраического и теоретико-множественного анализа простейших геометрических и топологических объектов, овладение классическим математическим аппаратом дифференциальной геометрии и топологии для дальнейшего использования в приложениях.

Задачи дисциплины: решение и моделирование широкого класса проблем, связанных с различными разделами математики, механики, физики, современной компьютерной геометрии.

10. Место учебной дисциплины в структуре ООП: для успешного освоения необходимо предварительное изучение следующих дисциплин: «Математический анализ», «Аналитическая геометрия».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Компетенция		Планируемые результаты обучения
Код	Название	
ОПК-1	Готовность использовать фундаментальные знания в области математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальных уравнений, дискретной математики и математической логики, теории вероятностей, математической статистики и случайных процессов, численных методов, теоретической механики в будущей профессиональной деятельности.	знать: базовые понятия в области дифференциальной геометрии и топологии; уметь: применять методы дифференциальной геометрии и топологии для решения задач профессиональной деятельности; владеть: навыками самостоятельного выбора методов дифференциальной геометрии и топологии для решения различных задач.
ПК-3	Способность строго доказывать утверждение, сформулировать результат, увидеть следствия полученного результата.	знать: методы формулировки и доказательства математических утверждений; уметь: применять аппарат дифференциальной геометрии и топологии для доказательства утверждений и теорем; владеть: навыками анализа и интерпретации результатов решения задач.

12. Объем дисциплины в зачетных единицах/час — 3/108.

Форма промежуточной аттестации: 8 семестр – экзамен.

13. Виды учебной работы

Вид учебной работы Аудиторные занятия		Трудоемкость (часы)		
		Всего	По семестрам	
			8 сем.	
		48	48	
в том числе:	лекции	24	24	
практические лабораторные Самостоятельная работа Экзамен Итого:				
		24	24	
		24	24	
		36	36	
		108	108	

13.1. Содержание дисциплины

п/п	Наименование раздела дисцип-	Содержание раздела дисциплины		
	1. Лекции			
		Плоские кривые. Касательный вектор. Натуральный параметр плоской кривой. Нормаль, кривизна. Пространственные кривые. Формулы Френе.		
1.2	Поверхность, касательная плоскость. Метрика касательной плоскости. Метрика поверхности	Поверхность, касательная плоскость. Метрика касательной плоскости. Метрика поверхности		
1.3	Вторая квадратичная форма. Нормальная кривизна поверхно- сти	Вторая квадратичная форма. Нормальная кривизна поверхности.		
1.4	Многообразия	Определение гладкого многообразия, примеры. Карты, атласы, замены координат. Определение гладкой функции на многообразии. Поверхности как многообразия. Теорема Уитни (без доказательства) Проективная плоскость. Касательное пространство. Касательное расслоение. Касательное отображение. Дифференциал отображения.		
	2. Л	абораторные занятия		
2.1	Плоские и пространственные кривые	Плоские кривые. Касательный вектор. Натуральный параметр плоской кривой. Нормаль, кривизна. Пространственные кривые. Формулы Френе.		
2.2	Поверхность, касательная плос-	Поверхность, касательная плоскость. Метрика касательной		

	кость. Метрика касательной плос- кости. Метрика поверхности	плоскости. Метрика поверхности
2.3	Вторая квадратичная форма. Нормальная кривизна поверхно- сти	Вторая квадратичная форма. Нормальная кривизна поверхности.
2.4	Многообразия	Определение гладкого многообразия, примеры. Карты, атласы, замены координат. Определение гладкой функции на многообразии. Поверхности как многообразия. Теорема Уитни (без доказательства) Проективная плоскость. Касательное пространство. Касательное расслоение. Касательное отображение. Дифференциал отображения.

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы (раздела) дисциплины	Виды занятий (часов)					
п/п		Лекции	Практические	Лабораторные	Самостоятель- ная работа	Всего	
1	Плоские и пространственные кривые	6		6	4	16	
2	Поверхность, касательная плоскость. Метрика касательной плоскости. Метрика поверхности	6		6	6	18	
3	Вторая квадратичная форма. Нормальная кривизна поверхности	6		6	6	18	
4	Многообразия	6		6	8	20	
	Итого:	24		24	24	72	

14. Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины рекомендуется использовать следующие средства:

- рекомендуемую основную и дополнительную литературу;
- методические указания и пособия;
- контрольные задания для закрепления теоретического материала;
- электронные версии учебников и методических указаний для выполнения практических работ.

Форма организации самостоятельной работы: подготовка к аудиторным занятиям; выполнение домашних заданий; выполнение лабораторных работ.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Игнатьев, Ю. Дифференциальная геометрия кривых и поверхностей в евклидовом пространстве : IV семестр / Ю. Игнатьев. — Казань : Казанский университет, 2013. — 203 с. — <url: <a="" href="http://biblioclub.ru/index.php?page=book&id=276302">http://biblioclub.ru/index.php?page=book&id=276302>.</url:>
2	Борисович Ю.Г. Введение в топологию. / Ю.Г. Борисович, Н.М. Близняков, Я.А. Израилевич, Т.Н. Фоменко М.: URSS, 2015 415 с.

б) дополнительная литература:

№ п/п	Источник
3	Мищенко, А.С. Курс дифференциальной геометрии и топологии [Электронный ресурс] : / А.С. Мищенко, А.Т. Фоменко. — Электрон. дан. — СПб. : Лань, 2010. — 503 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1_id=617
4	Стинрод Н. Первые понятия топологии: Геометрия отображений отрезков, кривых, окружностей и кругов / Н. Стинрод, У. Чинн; Пер. с англ. И. А. Вайнштейна.—Новокузнецк: Новокузнец. физмат. ин-т, 2000.—223 с.
5	Новиков С. П. Топология / С.П. Новиков.—2-е изд., испр. и доп.—М.;Ижевск: Ин-т компьютер. исслед., 2002.—335 с.
6	Гликлих Ю.Е. Что такое гладкое многообразие? /Ю.Е. Гликлих // Соросовский образовательный журнал 1998 № 11 С. 155-159
7	Гликлих Ю.Е. О понятиях топологического пространства и непрерывного отображения. /Ю.Е. Гликлих // Соросовский образовательный журнал 2000 Т. 6 № 11 С. 116-121.
8	Погорелов А. В Дифференциальная геометрия: Учеб. для студ. мат. спец. ун-тов и пед. ин-тов./ А.В. Погорелов.—6-е изд., стер.—М.: Наука, 1974.—176 с.
9	Виро О.Я. Задачи по топологии / О.Я. Виро, О.А. Иванов, Н.Ю. Нецветаев, В.М. Харламов СПб: Издательство СПбГУ, 2000 208 с.

в) информационные электронно-образовательные ресурсы:

_	/ 1 1	- 1
	№ п/п	Источник
	10	www.lib.vsu.ru –3H5 BГУ

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1	Борисович Ю.Г. Введение в топологию. / Ю.Г. Борисович, Н.М. Близняков, Я.А. Израилевич, Т.Н. Фоменко М.: URSS, 2015 415 с.

- 17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости) нет
- **18. Материально-техническое обеспечение дисциплины:** лекционная аудитория, компьютерный класс.

19. Фонд оценочных средств:

19.1 Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содер- жание компе- тенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС (средства оценива- ния)
	Знать: базовые понятия в области дифференциальной геометрии и топологии.	Разделы 1-4	Лабораторные работы 1-3
ОПК-1	Уметь: применять методы дифференциальной геометрии и топологии для решения задач профессиональной деятельности.	Разделы 1-4	Лабораторные работы 1-3
	Владеть: навыками самостоятельного выбора методов дифференциальной геометрии и топологии для решения различных задач.	Разделы 1-4	Лабораторные работы 1-3
	Знать: методы формулировки и дока- зательства математических утвержде- ний.	Разделы 1-4	Лабораторные работы 1-3
ПК-3	Уметь: применять аппарат дифференциальной геометрии и топологии для доказательства утверждений и теорем.	Разделы 1-4	Лабораторные работы 1-3
	Владеть: навыками анализа и интерпретации результатов решения задач.	Разделы 1-4	Лабораторные работы 1-3
_	КИМ		

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на экзамене используются следующие показатели:

- 1) знание базовых понятий в области дифференциальной геометрии и топологии;
- 2) знание методов формулировки и доказательства математических утверждений;
- 3) умение применять методы дифференциальной геометрии и топологии для решения задач профессиональной деятельности;
- 4) умение применять аппарат дифференциальной геометрии и топологии для доказательства утверждений и теорем;
- 5) владение навыками самостоятельного выбора методов дифференциальной геометрии и топологии для решения различных задач;
 - 6) владение навыками анализа и интерпретации результатов решения задач;

Для оценивания результатов обучения на экзамене используется 4-балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Критерии оценивания компетенций	Уровень сформиро- ванности компетенций	Шкала оценок
Полное соответствие ответа обучающегося всем перечисленным критериям. Обучающийся демонстрирует высокий уровень владения материалом, ориентируется в предметной области, верно отвечает на все дополнительные вопросы.	Повышенный уровень	Отлично
Ответ на контрольно-измерительный материал не соответствует одному или двум из перечисленных показателей, но обучающийся	Базовый уро- вень	Хорошо

дает правильные ответы на дополнительные вопросы. Допускаются ошибки при воспроизведении части теоретических положений.		
Ответ на контрольно-измерительный материал не соответствует любым трём из перечисленных показателей, обучающийся дает неполные ответы на дополнительные вопросы. Сформированные знания основных понятий, определений и теорем, изучаемых в курсе, не всегда полное их понимание с затруднениями при воспроизведении.	Пороговый уровень	Удовлетвори- тельно
Ответ на контрольно-измерительный материал не соответствует любым четырём из перечисленных показателей. Обучающийся демонстрирует отрывочные знания (либо их отсутствие) основных понятий, определений и теорем, используемых в курсе.	-	Неудовлетвори- тельно

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к экзамену

- 1. Плоские кривые.
- 2. Касательный вектор.
- 3. Натуральный параметр плоской кривой.
- 4. Нормаль, кривизна.
- 5. Пространственные кривые.
- 6. Формулы Френе.
- 7. Поверхность, касательная плоскость.
- 8. Метрика касательной плоскости.
- 9. Метрика поверхности.
- 10. Вторая квадратичная форма.
- 11. Нормальная кривизна поверхности.
- 12. Определение гладкого многообразия, примеры.
- 13. Карты, атласы, замены координат.
- 14. Определение гладкой функции на многообразии.
- 15. Поверхности как многообразия.
- 16. Теорема Уитни (без доказательства).
- 17. Проективная плоскость.
- 18. Касательное пространство.
- 19. Касательное расслоение.
- 20. Касательное отображение.
- 21. Дифференциал отображения.

19.3.2 Перечень лабораторных работ

- 1. Кривые на плоскости.
- 2. Кривые на поверхности.

3. Квадратичные формы.

Типовое задание для лабораторной работы

Лабораторная работа № 1 «Кривые на плоскости»

Цель работы: сформировать у студента начальные знания о кривых на плоскости **Требования к выполнению работы:** наличие у студента необходимых лекций и учебников для подготовки к ответам

Отчёт о работе проводится в виде собеседования

Критерии оценки: для получении оценки «зачтено» необходимо показать высокий уровень владения теоретическим материалом. Уметь решать задачи по теме.

Задание:

Задание № 1

Пусть r(t) – кривая на поверхности, X(t) и Y(t) – векторные поля вдоль нее, I – первая фундаментальная форма. Доказать, что

$$(d/dt) I(X(t), Y(t)) = I((D/dt)X(t), Y(t)) + I(X(t), (D/dt)Y(t)).$$

3адание № 2

Символы Кристоффеля второго рода $\Gamma_{ii}{}^k$ – это

- а) коэффициенты в деривационных формулах Гаусса
- б) выражения вида ($\partial_i r_i, r_k$)
- в) выражения вида ($\partial_i r_i, n_k$)
- г) коэффициенты в формулах нормальной кривизны

Задание № 3

Кривизна кривой измеряет насколько эта кривая

- а) не прямая
- б) не плоская
- в) отличается от окружности
- г) быстро вращается

Задание № 4

Геодезическими на сфере являются

- а) все окружности большого круга и только они
- б) все параллели и меридианы и только они
- в) только те окружности большого круга, у которых равна нулю нормальная кривизна
 - г) правильный ответ не приведен

Задание №5

На конусе $r(u,v)=(u\cos v, u\sin v, ku), k>0$ – константа, u>0, является ли геодезической полупрямая $r(u)=(u\cos C, u\sin C, ku), C=const$ (получена пересечением конуса с плоскостью, проходящей через ось Oz)?

Лабораторная работа № 2 «Кривые на поверхности»

Цель работы: сформировать у студента начальные знания о кривых на поверхности. **Требования к выполнению работы:** наличие у студента необходимых лекций и учебников для подготовки к ответам

Отчёт о работе проводится в виде собеседования

Критерии оценки: для получении оценки «зачтено» необходимо показать высокий уровень владения теоретическим материалом. Уметь решать задачи по теме.

Задание:

Задание № 1

Пусть X(t) и Y(t) – параллельные векторные поля вдоль кривой на поверхности, I – первая фундаментальная форма. Доказать, что I(X(t),Y(t)) есть величина постоянная.

Задание № 2

Репер Френе состоит из единичных векторов

- а) нормали, бинормали и тринормали
- б) главной нормали, просто нормали и диагонали
- в) касательной, главной нормали и бинормали
- г) касательной, просто нормали и бинормали

Задание № 3

Пусть m_0 – точка поверхности, X_0 – касательный вектор в этой точке. Какое из следующих утверждений верно всегда:

- а) при всех $t \in [0,\infty)$ существует единственная геодезическая r(t) такая, что $r(0) = m_0$ и $r'(0) = X_0$
- б) при $t \in [0,\epsilon)$, где ϵ достаточно мало, существует единственная геодезическая r(t) такая, что $r(0) = m_0$ и $r'(0) = X_0$
- в) если X_0 достаточно мало, то при всех $t \in [0,\infty)$ существует единственная геодезическая r(t) такая, что $r(0)=m_0$ и $r'(0)=X_0$
- г) утверждение б) выполняется, только если нормальная кривизна в направлении вектора X_0 равна нулю

Задание № 4

Какие из этих кривых не являются геодезическими на сфере

- а) все меридианы
- б) все параллели, кроме экватора
- в) любая окружность большого круга
- г) экватор

Задание №5

На конусе $r(u,v)=(u\cos v, u\sin v, ku), k>0$ – константа, u>0, является ли геодезической окружность $r(v)=(C\cos v, C\sin v, kC), C=const, C>0$ (получена как пересечение конуса с горизонтальной плоскостью, проходящей через точку (0,0,kC) оси Oz, C>0)?

Лабораторная работа № 3 «Квадратичные формы»

Цель работы: сформировать у студента понимание о свойствах геометрических объектов.

Требования к выполнению работы: наличие у студента необходимых лекций и учебников для подготовки к ответам

Отчёт о работе проводится в виде собеседования

Критерии оценки: для получении оценки «зачтено» необходимо показать высокий уровень владения теоретическим материалом. Уметь решать задачи по теме.

Задание:

Задание № 1

Пусть X(t) и Y(t) – параллельные векторные поля вдоль кривой на поверхности, I – первая фундаментальная форма. Доказать, что I(X(t),Y(t)) есть величина постоянная.

Задание № 2

Репер Френе состоит из единичных векторов

- а) нормали, бинормали и тринормали
- б) главной нормали, просто нормали и диагонали
- в) касательной, главной нормали и бинормали
- г) касательной, просто нормали и бинормали

Задание № 3

Пусть m_0 – точка поверхности, X_0 – касательный вектор в этой точке. Какое из следующих утверждений верно всегда:

- а) при всех $t \in [0,\infty)$ существует единственная геодезическая r(t) такая, что $r(0) = m_0$ и $r'(0) = X_0$
- б) при $t \in [0,\epsilon)$, где ϵ достаточно мало, существует единственная геодезическая r(t) такая, что $r(0)=m_0$ и $r'(0)=X_0$
- в) если X_0 достаточно мало, то при всех $t \in [0,\infty)$ существует единственная геодезическая r(t) такая, что $r(0) = M_0$ и $r'(0) = X_0$
- г) утверждение б) выполняется, только если нормальная кривизна в направлении вектора X_0 равна нулю

Задание № 4

Какие из этих кривых не являются геодезическими на сфере

- а) все меридианы
- б) все параллели, кроме экватора

- в) любая окружность большого круга
- г) экватор

Задание №5

На конусе $r(u,v)=(u\cos v, u\sin v, ku), k>0$ – константа, u>0, является ли геодезической окружность $r(v)=(C\cos v, C\sin v, kC), C=const, C>0$ (получена как пересечение конуса с горизонтальной плоскостью, проходящей через точку (0,0,kC) оси Oz, C>0)?

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: письменного опроса и контрольных работ. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования, а также в соответствии с Положением о балльно-рейтинговой системе контроля знаний на факультете компьютерных наук ВГУ.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний.

При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.