<u>www.vsu.ru</u> ПВГУ 2.1.02 – 2017

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой цифровых технологий

С.Д.Кургалин 30.06.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.Б.22 МЕТОДЫ ОПТИМИЗАЦИИ

1. Код и наименование направления подготовки/специальности:

02.03.01 Математика и компьютерные науки

- 2. Профиль подготовки/специализация: для всех профилей
- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины: цифровых технологий
- **6. Составители программы:** Атанов Артём Викторович, кандидат физикоматематических наук, доцент
- **7. Рекомендована:** Научно-методическим советом факультета компьютерных наук (протокол № 6 от 25.06.2018)

- 9. Цели и задачи учебной дисциплины: целью освоения дисциплины является приобретение навыков в анализе, постановке и решении экстремальных задач; изучение основных моделей принятия решений; формирования умений по использованию математических знаний, языка и символики при построении организационно-управленческих моделей. Основными задачами дисциплины являются ознакомление с прикладными моделями, в которых возникают задачи оптимизации; рассмотрение и реализация основных алгоритмов решения задач оптимизации.
- **10. Место учебной дисциплины в структуре ООП:** дисциплина относится к базовой части блока Б1. Для успешного освоения дисциплины необходимо предварительное изучение курсов «Фундаментальная и компьютерная алгебра», «Математический анализ».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Компетенция		Планируемые результаты обучения	
Код	Название		
	Способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий и с	знать: основные понятия, определения и теоремы математического программирования, постановку классических задач оптимизации и алгоритмы их решения, язык предметной области;	
ОПК-2	учетом основных требований информационной безопасности.	уметь: формулировать различные научнотехнические задачи в форме задач линейного, нелинейного, динамического программирования;	
		владеть: практическими навыками построения математических моделей прикладных задач и их решения с использованием известных методов оптимизации.	
	Способность строго доказывать утверждение, сформулировать результат, увидеть следствия полученного результата.	знать: методы формулировки и доказательства математических утверждений; уметь: применять аппарат методов оптимиза-	
ПК-3		ции для доказательства утверждений и теорем;	
		владеть: навыками анализа и интерпретации результатов решения задач.	
	Способность использовать методы математического и алгоритмического моделирования при решении	знать: методы математического и алгоритмического моделирования задач оптимизации;	
	теоретических и прикладных задач.	уметь: выбирать и адаптировать существую-	
ПК-5		щие оптимизационные методы для решения задач, возникающих в профессиональной деятельности;	
		владеть: навыками квалифицированного выбора и адаптации существующих методов решения задач оптимизации.	

12. Объем дисциплины в зачетных единицах/час — 5/180.

Форма промежуточной аттестации: 7 семестр – экзамен.

13. Виды учебной работы

		Трудоемкость (часы)		
Duz velokuoš nokozu		По семестрам		
Вид учебной работы	Всего	7 сем.		
Аудиторные заняти	я 68	68		
в том числе: лекции	34	34		
практически	e 34	34		
лабораторны	е			
Самостоятельная работ	a 76	76		
Экзаме	н 36	36		
Итого	o: 180	180		

13.1. Содержание дисциплины

п/п	Наименование раздела дисцип- лины	Содержание раздела дисциплины				
	1. Лекции					
1.1	Введение. Задачи оптимизации и их классификация	Содержание предмета и область применения методов оптимизации. Целевая функция. Задача конечномерной оптимизации. Классы задач оптимизации. Формализация экстремальных задач. Примеры задач оптимизации.				
1.2	Методы линейного программирования	Виды задач линейного программирования, формулировка задачи линейного программирования в общей, канонической и стандартной формах. Графический метод решения задач линейного программирования. Симплекс-метод при известном допустимом базисном решении. Симплекс-таблицы. Экономическая интерпретация симплекс-метода. Нахождение начального допустимого базисного решения методом искусственного базиса. Двойственная задача линейного программирования. Экономическая интерпретация двойственных переменных.				
1.3	Транспортная задача	Классическая транспортная задача. Метод северо-западного угла и метод минимальной стоимости нахождения опорного плана. Метод потенциалов. Транспортная задача с промежуточными пунктами. Задача о назначениях. Задача выбора кратчайшего пути.				
1.4	Целочисленное программирова- ние	Постановка задачи целочисленного программирования. Метод ветвей и границ. Метод Гомори.				
1.5	Методы нелинейного программирования	Формулировка задачи нелинейного программирования. Метод множителей Лагранжа. Теорема Куна-Таккера. Условия оптимальности. Двойственная задача. Метод возможных направлений. Метод штрафных и барьерных функций.				
1.6	Методы безусловной минимиза- ции функций одной переменной	Принципы построения методов поиска безусловного экстремума. Постановка задачи и алгоритм поиска. Алгоритм Свенна. Метод равномерного поиска. Метод деления интервала пополам. Метод дихотомии. Метод золотого сечения.				

	Методы безусловной минимиза-	Метод Хука-Дживса. Метод градиентного спуска с постоянным
1.7	ции функций многих переменных	шагом. Метод Ньютона.
1.8	Динамическое программирование	Постановка задачи динамического программирования. Функция Беллмана. Принцип оптимальности и уравнение Беллмана. Общая схема решения задач динамического программирования. Область применения динамического программирования.
	2. ſ	
2.1	Методы линейного программиро- вания	Виды задач линейного программирования, формулировка задачи линейного программирования в общей, канонической и стандартной формах. Графический метод решения задач линейного программирования. Симплекс-метод при известном допустимом базисном решении. Симплекс-таблицы. Экономическая интерпретация симплекс-метода. Нахождение начального допустимого базисного решения методом искусственного базиса. Двойственная задача линейного программирования. Экономическая интерпретация двойственных переменных.
2.2	Транспортная задача	Классическая транспортная задача. Метод северо-западного угла и метод минимальной стоимости нахождения опорного плана. Метод потенциалов. Транспортная задача с промежуточными пунктами. Задача о назначениях. Задача выбора кратчайшего пути.
2.3	Целочисленное программирова- ние	Постановка задачи целочисленного программирования. Метод ветвей и границ. Метод Гомори.
2.4	Методы нелинейного программирования	Формулировка задачи нелинейного программирования. Метод множителей Лагранжа. Теорема Куна-Таккера. Условия оптимальности. Двойственная задача. Метод возможных направлений. Метод штрафных и барьерных функций.
2.5	Методы безусловной минимиза- ции функций одной переменной	Принципы построения методов поиска безусловного экстремума. Постановка задачи и алгоритм поиска. Алгоритм Свенна. Метод равномерного поиска. Метод деления интервала пополам. Метод дихотомии. Метод золотого сечения.
2.6	Методы безусловной минимиза- ции функций многих переменных	Метод Хука-Дживса. Метод градиентного спуска с постоянным шагом. Метод Ньютона.
2.7	Динамическое программирование	Постановка задачи динамического программирования. Функция Беллмана. Принцип оптимальности и уравнение Беллмана. Общая схема решения задач динамического программирования. Область применения динамического программирования.

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование темы (раздела) дисциплины	Виды занятий (часов)					
П/П		Лекции	Практические	Лабораторные	Самостоятель- ная работа	Всего	
1	Введение. Задачи оптимиза- ции и их классификация	2	0		4	6	
2	Методы линейного програм- мирования	6	8		12	26	

3	Транспортная задача	6	6	12	24
4	Целочисленное программиро- вание	6	6	12	24
5	Методы нелинейного про- граммирования	6	6	10	22
6	Методы безусловной миними- зации функций одной пере- менной	2	2	10	14
7	Методы безусловной миними- зации функций многих пере- менных	4	4	10	18
8	Динамическое программиро- вание	2	2	6	10
	Итого:	34	34	76	144

14. Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины рекомендуется использовать следующие средства:

- рекомендуемую основную и дополнительную литературу;
- методические указания и пособия;
- контрольные задания для закрепления теоретического материала;
- электронные версии учебников и методических указаний для выполнения практических работ.

Форма организации самостоятельной работы: подготовка к аудиторным занятиям; выполнение домашних заданий; выполнение контрольных работ.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
	Струченков, В. И. Методы оптимизации в прикладных задачах / В.И. Струченков. — М. Берлин :
1	Директ-Медиа, 2015. — 434 с. — <url: <a="" href="http://biblioclub.ru/index.php?page=book&id=457743">http://biblioclub.ru/index.php?page=book&id=457743>. —</url:>
	<url: 10.23681="" 457743="" doi.org="" http:="">.</url:>
	Юрьева, А.А. Математическое программирование [Электронный ресурс] : учебное пособие. —
2	Электрон. дан. — СПб. : Лань, 2014. — 432 с. — Режим доступа:
	http://e.lanbook.com/books/element.php?pl1_id=49475

б) дополнительная литература:

№ п/п	Источник
3	Акулич, И.Л. Математическое программирование в примерах и задачах [Электронный ресурс] : учебное пособие. — Электрон. дан. — СПб. : Лань, 2011. — 348 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=2027
4	Есипов, Б.А. Методы исследования операций [Электронный ресурс] : учебное пособие. — Электрон. дан. — СПб. : Лань, 2013. — 300 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=10250
5	Горлач, Б.А. Исследование операций [Электронный ресурс] : учебное пособие. — Электрон. дан. — СПб. : Лань, 2013. — 442 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=4865
6	Ржевский, С.В. Исследование операций [Электронный ресурс] : учебное пособие. — Электрон.

дан. — СПб. : Лань, 2013. — 476 с. — Режим доступа:
http://e.lanbook.com/books/element.php?pl1_id=32821

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
7	www.lib.vsu.ru –3HБ ВГУ
8	http://bigor.bmstu.ru/?pkg/OSORROXOZUMMRTWMA5OO - Электронное учебное издание по курсу «Методы оптимизации» (составитель Карпенко А.П., МГТУ им. Н.Э.Баумана)

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1	Акулич, И.Л. Математическое программирование в примерах и задачах [Электронный ресурс] : учебное пособие. — Электрон. дан. — СПб. : Лань, 2011. — 348 с. — Режим
	доступа: http://e.lanbook.com/books/element.php?pl1_id=2027

- 17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости) нет
- **18. Материально-техническое обеспечение дисциплины:** лекционная аудитория, оборудованная мультимедийным проектором.

19. Фонд оценочных средств:

19.1 Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содер- жание компе- тенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС (средства оценива- ния)
	Знать: основные понятия, определения и теоремы математического программирования, постановку классических задач оптимизации и алгоритмы их решения, язык предметной области.	Разделы 1-8	КИМ
ОПК-2	Уметь: формулировать различные на- учно-технические задачи в форме за- дач линейного, нелинейного, динами- ческого программирования.	Разделы 1-8	Контрольные работы 1-3
	Владеть: практическими навыками построения математических моделей прикладных задач и их решения с использованием известных методов оптимизации.	Разделы 1-8	Контрольные работы 1-3

	Знать: методы формулировки и доказательства математических утверждений.	Разделы 1-8	ким
ПК-3	Уметь: применять аппарат методов оптимизации для доказательства утверждений и теорем.	Разделы 1-8	Контрольные работы 1-3
ПК-5	Владеть: навыками анализа и интерпретации результатов решения задач.	Разделы 1-8	Контрольные работы 1-3
	Знать: методы математического и алгоритмического моделирования задач оптимизации.	Разделы 1-8	ким
	Уметь: выбирать и адаптировать существующие оптимизационные методы для решения задач, возникающих в профессиональной деятельности.	Разделы 1-8	Контрольные работы 1-3
	Владеть: навыками квалифицированного выбора и адаптации существующих методов решения задач оптимизации.	Разделы 1-8	Контрольные работы 1-3
	ким		

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на экзамене используются следующие показатели:

- 1) знание основных понятий, определений и теорем математического программирования, постановки классических задач оптимизации и алгоритмов их решения, языка предметной области;
 - 2) знание методов формулировки и доказательства математических утверждений;
 - 3) знание методов математического и алгоритмического моделирования задач оптимизации;
- 4) умение формулировать различные научно-технические задачи в форме задач линейного, нелинейного, динамического программирования;
- 5) умение применять аппарат методов оптимизации для доказательства утверждений и теорем;
- 6) умение выбирать и адаптировать существующие оптимизационные методы для решения задач, возникающих в профессиональной деятельности;
- 7) владение практическими навыками построения математических моделей прикладных задач и их решения с использованием известных методов оптимизации;
 - 8) владение навыками анализа и интерпретации результатов решения задач;
- 9) владение навыками квалифицированного выбора и адаптации существующих методов решения задач оптимизации.

Для оценивания результатов обучения на экзамене используется 4-балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Критерии оценивания компетенций	Уровень сформиро- ванности компетенций	Шкала оценок
Полное соответствие ответа обучающегося всем перечисленным критериям. Обучающийся демонстрирует высокий уровень владения материалом, ориентируется в предметной области, верно отвечает на все дополнительные вопросы.	Повышенный уровень	Отлично
Ответ на контрольно-измерительный материал не соответствует одному или двум из перечисленных показателей, но обучающийся дает правильные ответы на дополнительные вопросы. Допускаются ошибки при воспроизведении части теоретических положений.	Базовый уро- вень	Хорошо
Ответ на контрольно-измерительный материал не соответствует любым трём из перечисленных показателей, обучающийся дает	Пороговый уровень	Удовлетвори- тельно

неполные ответы на дополнительные вопросы. Сформированные знания основных понятий, определений и теорем, изучаемых в курсе, не всегда полное их понимание с затруднениями при воспроизведении.		
Ответ на контрольно-измерительный материал не соответствует любым четырём из перечисленных показателей. Обучающийся демонстрирует отрывочные знания (либо их отсутствие) основных понятий, определений и теорем, используемых в курсе.	-	Неудовлетвори- тельно

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к экзамену

- 1. Постановка задачи конечномерной оптимизации. Классификация задач оптимизации.
- 2. Задача линейного программирования. Формы записи задачи линейного программирования. Геометрический метод решения задачи линейного программирования.
- 3. Симплекс-метод решения задачи линейного программирования. Теоретические основы симплекс-метода.
- 4. Построение начального допустимого базисного решения. Метод больших штрафов (Мметод).
- 5. Построение начального допустимого базисного решения. Двухэтапный метод.
- 6. Анализ чувствительности модели.
- 7. Двойственная задача линейного программирования. Теоремы двойственности.
- 8. Двойственный симплекс-метод. Экономическая интерпретация двойственной задачи.
- 9. Целочисленное линейное программирование. Метод ветвей и границ.
- 10. Целочисленное линейное программирование. Метод отсекающих плоскостей (Гомори).
- 11. Транспортная задача. Методы построения опорного плана транспортной задачи.
- 12. Решение транспортной задачи. Метод потенциалов.
- 13. Транспортные задачи особого вида. Задача о назначениях. Задача с промежуточными пунктами.
- 14. Основные понятия теории игр. Геометрический способ решения игры.
- 15. Связь теории игр с линейным программированием.
- 16. Нелинейное программирование. Безусловная оптимизация функции одной переменной.
- 17. Нелинейное программирование. Безусловная оптимизация функции многих переменных. Метод Хука-Дживса.
- 18. Нелинейное программирование. Безусловная оптимизация функции многих переменных. Метод наискорейшего градиентного спуска.
- 19. Нелинейное программирование. Безусловная оптимизация функции многих переменных. Метод Ньютона.
- 20. Нелинейное программирование. Оптимизация при наличии ограничений в виде равенств. Метод множителей Лагранжа.
- 21. Нелинейное программирование. Оптимизация при наличии ограничений в виде неравенств. Условия Куна-Таккера.
- 22. Задачи нелинейного программирования специального вида. Сепарабельное программирование
- 23. Задачи нелинейного программирования специального вида. Квадратичное программирование.
- 24. Задача динамического программирования. Принцип оптимальности и функциональное уравнение Беллмана.

19.3.2 Типовые задания для контрольных работ

Контрольная работа № 1

Задание 1 (20 баллов). Решить задачу линейного программирования графическим методом

$$\begin{cases} z = 3x_1 + 2x_2 \to \max, \\ x_1 + 3x_2 \le 15, \\ 4x_1 + x_2 \le 16, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

Задание 2 (30 баллов). Решить задачу линейного программирования симплекс-методом.

$$\begin{cases} z = 3x_1 + 2x_2 \rightarrow \max, \\ 2x_1 + x_2 \le 18, \\ 2x_1 + 3x_2 \le 42, \\ 3x_1 + x_2 \le 24, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

Контрольная работа № 2

Задание 1 (20 баллов). Используя метод потенциалов, найти оптимальный план перевозок для транспортной задачи (для построения начального опорного плана использовать метод северозападного угла)

Пункты	B ₁	B ₂	B_3	B ₄	B ₅	Предложение
A ₁	1	5	2	2	6	100
A ₂	3	6	3	4	3	15
A_3	8	10	4	5	8	90
Спрос	30	40	55	70	10	

Задание 2 (20 баллов). Решить задачу нелинейного программирования, используя метод множителей Лагранжа

$$\begin{cases} x^2 + y^2 - 4z \rightarrow \min, \\ 6x + 2z = 2. \end{cases}$$

Задание 3 (10 баллов). Решить задачу о рюкзаке, если известны его вместимость W = 7, количество предметов p = 5, а также масса w и ценность v каждого предмета

i	1	2	3	4	5
W	2	3	5	1	8
٧	1	4	2	5	3

Контрольная работа № 3

Задание 1 (10 баллов). Найти точки экстремума функции $f = \frac{1}{1+x^2}$.

Задание 2 (15 баллов). Найти минимум функции $f = \frac{x^2}{2} - 3$ методом деление интервала пополам на отрезке [0,5] с точностью $\varepsilon = 1$.

Задание 3 (25 баллов). Найти минимум функции $4x_1^2 + 4x_1x_2 + 6x_2^2 - 17x_1$ методом Ньютона с точностью $\varepsilon = 0.0001$. В качестве начальной точки выберите $x^{(0)} = (0;0)^T$.

9

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: письменного опроса и контрольных работ. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования, а также в соответствии с Положением о балльно-рейтинговой системе контроля знаний на факультете компьютерных наук ВГУ.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний.

При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.