МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой материаловедения и индустрии наносистем

В.М. Иевлев 20.06.2018г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.Б.07 Физика

- 1. Код и наименование направления подготовки/специальности: 04.03.02 Химия, физика и механика материалов
- 2. Профиль подготовки/специализация:

3. Квалификация (степень) выпускника: бакалавр

4. Форма обучения: очная

- **5. Кафедра, отвечающая за реализацию дисциплины:** Материаловедения и индустрии наносистем
- 6. Составители программы: Сербин Олег Викторович, кандидат физико-математических наук, доцент
- **7. Рекомендована:** научно-методическим советом химического факультета, протокол №5 от 24.05.2018

8. Учебный год: 2018-2019, 2019-2020 **Семестр(ы):** 2,3

9. Цели и задачи учебной дисциплины:

Цель: развитие у студентов физического подхода к рассмотрению различных проблем и явлений. Задача - общее развитие и формирование естественнонаучного мировоззрения, ясного представления о возникновении и развитии физических идей в их взаимосвязи.

10. Место учебной дисциплины в структуре ООП:

Б1, базовая часть

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

	Компетенция	Планируемые результаты обучения
Код	Название	
ОПК-1	Способность использовать современные методы химии, физики, математики механики, биологии на уровне, необходимом для приобретения новых знаний с их использованием и решения задач, возникающих при выполнении профессиональных функций и имеющих естественнонаучное содержание.	знать: основные физические явления и основные законы механики, молекулярной физики и термодинамики, электричества и магнетизма, колебаний и волн, оптики уметь: использовать полученные базовые знания в области механики, молекулярной физики и термодинамики электричества и магнетизма, колебаний и волн, оптики владеть: знаниями о физических моделях, а также об ограничениях и границах их применимости при описании физических явлений.
ОПК-2	способностью использовать практические навыки экспериментальной работы в областях неорганической, аналитической, органической и физической химии; химии и физики высокомолекулярных соединений; структурной химии и кристаллохимии; общей физики; физики конденсированного состояния и механики материалов, позволяющие эффективно работать в различных экспериментальных областях наук о материалах и в современной технологии материалов	знать: основные физические явления и основные законы механики, молекулярной физики и термодинамики, электричества и магнетизма, колебаний и волн, оптики уметь: решать типовые задачи по основным разделам дисциплины; применять полученные знания по физике при изучении других дисциплин, выделять конкретное физическое содержание в прикладных задачах профессиональной деятельности. владеть: навыками ведения физического эксперимента; основными методами постановки, исследования и решения задач

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — 6/216.

Форма промежуточной аттестации – зачет с оценкой, экзамен.

13. Виды учебной работы

		Трудоемкость			
Вид учебной работы	Всего	По семестрам			
		BCelo	2	3	

Аудиторные занятия	64	30	34	
в том числе: лекции	64	30	34	
практические				
лабораторные				
Самостоятельная работа	116	78	38	
Форма промежуточной аттестации (зачет – 0 час./ экзамен – 36 час.)	36	0	Экзамен - 36	
Итого:	216	108	108	

13.1. Содержание дисциплины

п/п	Наименование раздела	Содержание раздела дисциплины				
	дисциплины					
1. Лекции						
1.1	Механика	Система отсчета. Траектория, длина пути, вектор перемещения. Скорость. Ускорение и его составляющие. Угловая скорость и угловое ускорение. Первый закон Ньютона. Масса. Сила. Второй закон Ньютона. Третий закон Ньютона. Силы трения. Закон сохранения импульса. Центр масс. Уравнение движения тела переменной массы. Энергия, работа, мощность. Кинетическая и потенциальная энергии. Закон сохранения энергии. Удар абсолютно упругих и неупругих тел. Момент инерции. Кинетическая энергия вращения. Момент силы. Уравнение динамики вращательного движения твердого тела. Момент импульса и закон то сохранения. Деформации твердого тела. Законы Кеплера. Закон всемирного тяготения. Сила тяжести и вес. Невесомость. Поле тяготения и его напряженность. Работа в поле тяготения. Потенциал поля тяготения. Космические скорости. Неинерциальные системы отсчета. Силы инерции				
1.2	Молекулярная физика и термодинамика	Давление в жидкости и газе. Уравнение неразрывности. Уравнение Бернулли и следствия из него. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей. Методы определения вязкости. Движение тел в жидкостях и газах. Законы идеального газа. Уравнение Клапейрона — Менделеева. Основное уравнение молекулярно-кинетической теории идеальных газов. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения. Барометрическая формула. Распределение больцмана. Среднее число столкновений и средняя длина свободного пробега молекул. Опытное обоснование молекулярно-кинетической теории. Явления переноса в термодинамически неравновесных системах. Вакуум и методы его получения. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул. Первое начало термодинамики. Работа газа при изменении его объема. Теплоемкость. Применение первого начала термодинамики к изопроцессы. Энтропия, ее статистическое толкование и связь с термодинамический процесс. Политропный процесс. Круговой процесс (цикл). Обратимые и необратимые процессы. Энтропия, ее статистическое толкование и связь с термодинамики. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и их анализ. Внутренняя энергия реального газа. Эффект Джоуля — Томсона. Сжижение газов 57. Кристаллическое состояние. Классификация кристаллов. Физические типы кристаллических решеток. Кристаллическое состояние. Классификация кристаллов. Физические типы кристаллических решеток. Кристаллическое состояние. Вефекты в кристаллах.				

		теплоемкости Эйнштейна. Фононы. Статистические свойства фононного газа. Строение жидкостей.
		Поверхностное натяжение. Давление под изогнутой
		поверхностью жидкости. Капиллярные явления
1.3	Электричество и магнетизм	Взаимодействие зарядов. Закон сохранения электрического
	·	заряда. Закон Кулона. Электростатическое поле.
		Напряженность электростатического поля. Принцип
		суперпозиции электростатических полей. Поле диполя.
		Теорема Гаусса для электростатического поля в вакууме.
		Применение теоремы Гаусса к расчету некоторых
		электростатических полей в вакууме (поле равномерно
		заряженной бесконечной плоскости, поле двух бесконечных
		параллельных разноименно заряженных плоскостей. поле
		равномерно заряженной сферической поверхности. поле объемно заряженного шара, поле равномерно заряженного
		бесконечного цилиндра (нити). Циркуляция вектора
		напряженности электростатического поля. Потенциал
		электростатического поля. Разность потенциалов.
		Вычисление разности потенциалов по напряженности поля
		(равномерно заряженной бесконечной плоскости, двух
		бесконечных параллельных разноименно заряженных
		плоскостей, равномерно заряженной сферической
		поверхности, объемно заряженного шара, равномерно
		заряженного бесконечного цилиндра). Типы диэлектриков. Поляризация диэлектриков. Поляризованность.
		Поляризация диэлектриков. Поляризованность. Напряженность поля в диэлектрике. Электрическое
		смещение. Теореме Гаусса для электрике. Олектрическое
		диэлектрике. Условия на границе раздела двух
		диэлектрических сред. Проводники в электростатическом
		поле. Электрическая емкость уединенного проводника.
		Конденсаторы. Соединение конденсаторов. Энергия
		заряженного конденсатора. Энергия электростатического
		поля. Постоянный электрический ток. Электрический ток,
		сила и плотность тока.Сторонние силы. Электродвижущая сила и напряжение. Закон Ома. Сопротивление
		сила и напряжение. Закон Ома. Сопротивление проводников. Закон Ома для неоднородного участка цепи.
		Работа и мощность тока. Закон Джоуля — Ленца. Правила
		Кирхгофа для разветвленных цепей. Магнитное поле.
		Магнитное поле и его характеристики. Закон Био — Савара
		— Лапласа и его применение к расчету магнитного поля
		(магнитное поле прямого тока, магнитное поле в центре
		кругового проводника с током). Закон Ампера.
		Взаимодействие параллельных токов. Магнитная
		постоянная. Единицы магнитной индукции и напряженности
		магнитного поля. Магнитное поле движущегося заряда. Действие магнитного поля на движущийся заряд. Движение
		заряженных частиц в магнитном поле. Эффект Холла.
		Циркуляция вектора В магнитного поля в вакууме.
		Магнитные поля соленоида и тороида. Работа по
		перемещению проводника и контура с током в магнитном
		поле. Электромагнитная индукция. Закон Фарадея.
		Вращение рамки в магнитном поле. Индуктивность контура.
		Самоиндукция. Энергия магнитного поля. Намагниченность.
		Магнитное поле в веществе. Ферромагнетики и их свойства. Природа ферромагнетизма. Основы теории
		свойства. Природа ферромагнетизма. Основы теории Максвелла для электромагнитного поля. Вихревое
		электрическое поле. Ток смещения. Уравнения Максвелла
		для электромагнитного поля
1.4	Колебания и волны	Электромагнитные колебания. Вынужденные колебания.
		Резонанс. Переменный ток.(R,L,C,R-L-С цепи). Переменный
		ток. Резонанс напряжений. Резонанс токов. Мощность,
		выделяемая в цепи переменного тока. Электромагнитные
		волны. Дифференциальное уравнение электромагнитной
		волны.

1.5	Оптика	Геометрическая оптика. Основные законы геометрической
		оптики. Полное отражение. Масса и импульс фотона.
		Единство корпускулярных и волновых свойств света.
		Давление света. Линзы. Фокус. Фокусное расстояние.
		Формула тонкой линзы. Аберрации оптических систем.
		Энергетические величины в фотометрии. Световые
		величины в фотометрии. Интерференция света. Принцип
		Гюйгенса. Когерентность. Методы наблюдения
		интерференции. Интерференция света. Расчет
		интерференционной картины от двух щелей. Полосы
		равного наклона. Полосы равной толщины. Кольца
		Ньютона. Просветление оптики. Дифракция света. Принцип
		Гюйгенса-Френеля. Зоны Френеля. Дифракция в
		сходящихся лучах. Дифракция Фраунгофера. Дифракция
		Фраунгофера на дифракционной решётке. Дифракция на
		пространственной решетке. Взаимодействие
		электромагнитных волн с веществом. Дисперсия света.
		Электронная теория дисперсии. Поглощение света. Виды
		спектров поглащения. Поляризация света. Закон Малюса.
		Поляризация света при отражении и преломлении. Двойное
		лучепреломление. Поляризационные призмы.
		Искусственная оптическая анизотропия. Вращение
		плоскости поляризации. Квантовая природа излучения.
		Виды оптических излучений. Тепловое излучение и его
		характеристики. Абсолютно черное тело. Закон Кирхгофа.
		Закон Стефана-Больцмана. Закон смещения Вина. Формула
		Рэлея-Джинса и Вина. Квантовая гипотеза Планка.
		Фотоэффект. Законы фотоэффекта. Масса и импульс
		фотона. Единство корпускулярных и волновых свойств
		света. Давление света. Эффект Комптона.

13.2. Темы (разделы) дисциплины и виды занятий

N.1.		Виды занятий (часов)				
№ п/п	Наименование темы (раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
1	Механика	10	-	-	20	30
2	Молекулярная физика и термодинамика	18	-	-	30	48
3	Электричество и магнетизм	20	-	-	32	52
4	Колебания и волны	4	-	-	14	18
5	Оптика	12	-	-	20	32
	Итого:	64	-	-	116	180

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение практических заданий, тестов, заданий текущей аттестации и т.д.)

Организация изучения дисциплины предполагает:

- изучение основных и дополнительных литературных источников;
- текущий контроль успеваемости в форме устного опроса.
- **15.** Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)
- а) основная литература:

№ п/п	Источник		
1	Трофимова Т.И. Курс физики / Т.И. Трофимова М.: Academia, 2008. – 557 с.		

2	Детлаф А.А. Курс физики / А.А. Детлаф, Б.М. Яворский. – 10-е изд., стер. – Москва : Издательский
	центр "Академия", 2015. – 719 с.

б) дополнительная литература:

№ п/п	Источник
1	Грибов Л.А. Основы физики // Л.А. Грибов, Н.И. Прокофьева - М.: Физматлитература, 1995,- 555 с.
2	Савельев И.В. Курс общей физики / И.В. Савельев М. : Астрель, 2001 Кн.1 : Механика 336 с.
3	Савельев И.В. Курс общей физики / И.В. Савельев М. : Астрель, 2001 Кн.2 : Молекулярная физика и термодинамика 336 с.
4	Савельев И.В. Курс общей физики / И.В. Савельев М. : Астрель, 2001 Кн.З : Электричество и магнетизм 336 с.
5	Савельев И.В. Курс общей физики / И.В. Савельев М.: Астрель, 2001 Кн.4: Оптика 336 с.

в)информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Ресурс					
1.	http://www.elibrary.ru — Научная электронная библиотека eLIBRARY.RU - крупнейший российский информационный портал в области науки, технологии, медицины и образования, содержащий рефераты и полные тексты более 12 млн. научных статей и публикаций. На платформе eLIBRARY.RU доступны электронные версии более 1400 российских научно-технических журналов, в том числе более 500 журналов в открытом доступе.					
2.	Chemnet - официальное электронное издание Химического факультета МГУ в Internet, http://www.chem.msu.ru/rus/					
3.	Образовательный ресурс по материаловедению – http://www.materialscience.ru/lectures.htm					

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

18. Материально-техническое обеспечение дисциплины:

мультимедийный проектор, экран, ноутбук.

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание компетенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний умений, навыков)	формирования компетенции	ФОС* (средства оценивания)
ОПК-1	знать:	Механика.	Устный опрос.
Способность	основные физические явления	и Молекулярная	
использовать	основные законы механик	і, физика и	

современные методы химии, физики, математики механики, биологии на уровне, необходимом для приобретения новых знаний с их использованием и решения задач, возникающих при выполнении профессиональных функций и имеющих естественнонаучное содержание.	молекулярной физики и термодинамики, электричества и магнетизма, колебаний и волн, оптики уметь: использовать полученные базовые знания в области механики, молекулярной физики и термодинамики электричества и магнетизма, колебаний и волн, оптики владеть: знаниями о физических моделях, а также об ограничениях и границах их применимости при описании физических явлений	термодинамика. Электричество и магнетизм. Колебания и волны. Оптика.	
ОПК-2 способностью использовать практические навыки экспериментальной работы в областях неорганической, аналитической и физической химии; химии и физики высокомолекулярных соединений; структурной химии и кристаллохимии; общей физики; физики конденсированного состояния и механики материалов, позволяющие эффективно работать в различных экспериментальных областях наук о материалах и в современной технологии материалов	знать: основные физические явления и основные законы механики, молекулярной физики и термодинамики, электричества и магнетизма, колебаний и волн, оптики уметь: решать типовые задачи по основным разделам дисциплины; применять полученные знания по физике при изучении других дисциплин, выделять конкретное физическое содержание в прикладных задачах профессиональной деятельности. владеть: навыками ведения физического эксперимента; основными методами постановки, исследования и решения задач	Механика. Молекулярная физика и термодинамика. Электричество и магнетизм. Колебания и волны. Оптика.	Устный опрос.
Промежуточная аттеста	ция базательном порядке перечистяю		КИМ

^{*} В графе «ФОС» в обязательном порядке перечисляются оценочные средства текущей и промежуточной аттестаций.

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на зачете с оценкой и экзамене используется 4-балльная шкала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Уверенное знание лекционного курса	Повышенный	Отлично

	уровень	
Общее представление о курсе; умение формулировать	Базовый	Хорошо
утверждения, знакомство с доказательной стратегией.	уровень	
Знание всех базовых определений,	Пороговый	Удовлетвори-
	уровень	тельно
Незнание хотя бы одного из базовых определений	_	Неудовлетвори-
		тельно

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

	19.3.2 Перечень вопросов к зачету:
Nº	Тема вопроса
1.	Система отсчета. Траектория, длина пути, вектор перемещения
2.	Скорость
3.	Ускорение и его составляющие
4.	Угловая скорость и угловое ускорение
5.	Первый закон Ньютона. Масса. Сила
6.	Второй закон Ньютона
7.	Третий закон Ньютона
8.	Силы трения
9.	Закон сохранения импульса. Центр масс
10.	Уравнение движения тела переменной массы
11.	Энергия, работа, мощность
12.	Кинетическая и потенциальная энергии
13.	Закон сохранения энергии
14.	Графическом представление энергии
15.	Удар абсолютно упругих и неупругих тел
16.	Момент инерции
17.	Кинетическая энергия вращения
18.	Момент силы. Уравнение динамики вращательного движения твердого тела
19.	Момент импульса и закон сохранения
20.	Деформации твердого тела
21.	Законы Кеплера. Закон всемирного тяготения
22.	Сила тяжести и вес. Невесомость
23.	Поле тяготения и напряженность
24.	Работа в поле тяготения. Потенциал поля тяготения
25.	Космические скорости
26.	Неинерциальные системы отсчета. Силы инерции
27.	Давление в жидкости и газе
28.	Уравнение неразрывности
29.	Уравнение Бернулли и следствия из него
30.	Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
31.	Методы определения вязкости
32.	Движение тел в жидкостях и газах
33.	Законы идеального газа
34.	Уравнение Клапейрона — Менделеева
35.	Основное уравнение молекулярно-кинетической теории идеальных газов
36.	Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям
	теплового движения
37.	Барометрическая формула. Распределение Больцмана
38.	Среднее число столкновений и средняя длина свободного пробега молекул
39.	Опытное обоснование молекулярно-кинетической теории
40.	Явления переноса в термодинамически неравновесных системах
41.	Вакуум и методы его получения
42.	Число степеней свободы молекулы. Закон равномерного распределения энергии по

	степеням свободы молекул
43.	Первое начало термодинамики
44.	Работа газа при изменении его объема
45.	Теплоемкость
46.	Применение первого начала термодинамики к изопроцессам
47.	Адиабатический процесс. Политропный процесс
48.	Круговой процесс (цикл). Обратимые и необратимые процессы
49.	Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
50.	Второе начало термодинамики
51.	Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа
52.	Силы и потенциальная энергия межмолекулярного взаимодействия
53.	Уравнение Ван-дер-Ваальса
54.	Изотермы Ван-дер-Ваальса и их анализ
55.	Внутренняя энергия реального газа
56.	Эффект Джоуля — Томсона
57.	Сжижение газов
58.	Свойства жидкостей. Поверхностное натяжение
59.	Смачивание
60.	Давление под искривленной поверхностью жидкости
61.	Капиллярные явления

19.3.1 Перечень вопросов к экзамену:

Nº	Тема вопроса
1.	Система отсчета. Траектория, длина пути, вектор перемещения
2.	Скорость
3.	Ускорение и его составляющие
4.	Угловая скорость и угловое ускорение
5.	Первый закон Ньютона. Масса. Сила
6.	Второй закон Ньютона
7.	Третий закон Ньютона
8.	Силы трения
9.	Закон сохранения импульса. Центр масс
10.	Уравнение движения тела переменной массы
11.	Энергия, работа, мощность
12.	Кинетическая и потенциальная энергии
13.	Закон сохранения энергии
14.	Графическом представление энергии
15.	Удар абсолютно упругих и неупругих тел
16.	Момент инерции
17.	Кинетическая энергия вращения
18.	Момент силы. Уравнение динамики вращательного движения твердого тела
19.	Момент импульса и закон сохранения
20.	Деформации твердого тела
21.	Законы Кеплера. Закон всемирного тяготения
22.	Сила тяжести и вес. Невесомость
23.	Поле тяготения и напряженность
24.	Работа в поле тяготения. Потенциал поля тяготения
25.	Космические скорости
26.	Неинерциальные системы отсчета. Силы инерции
27.	Давление в жидкости и газе
28.	Уравнение неразрывности
29.	Уравнение Бернулли и следствия из него
30.	Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
31.	Методы определения вязкости
32.	Движение тел в жидкостях и газах
33.	Законы идеального газа

34.	Уравнение Клапейрона — Менделеева
35.	Основное уравнение молекулярно-кинетической теории идеальных газов
36.	Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям
	теплового движения
37.	Барометрическая формула. Распределение Больцмана
38.	Среднее число столкновений и средняя длина свободного пробега молекул
39.	Опытное обоснование молекулярно-кинетической теории
40.	Явления переноса в термодинамически неравновесных системах
41.	Вакуум и методы его получения
42.	Число степеней свободы молекулы. Закон равномерного распределения энергии по
	степеням свободы молекул
43.	Первое начало термодинамики
44.	Работа газа при изменении его объема
45.	Теплоемкость
46.	Применение первого начала термодинамики к изопроцессам
47.	Адиабатический процесс. Политропный процесс
48.	Круговой процесс (цикл). Обратимые и необратимые процессы
49.	Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
50.	Второе начало термодинамики
51.	Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа
52.	Силы и потенциальная энергия межмолекулярного взаимодействия
53.	Уравнение Ван-дер-Ваальса
54.	Изотермы Ван-дер-Ваальса и их анализ
55.	Внутренняя энергия реального газа
56.	Эффект Джоуля — Томсона
57.	Сжижение газов
58.	Свойства жидкостей. Поверхностное натяжение
59.	Смачивание
60.	Давление под искривленной поверхностью жидкости
61.	Капиллярные явления
62.	Взаимодействие зарядов. Закон сохранения электрического заряда. Закон Кулона
63.	Электростатическое поле. Напряженность электростатического поля
64.	Принцип суперпозиции электростатических полей. Поле диполя
65.	Теорема Гаусса для электростатического поля в вакууме.
66.	Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
	(поле равномерно заряженной бесконечной плоскости, поле двух бесконечных
	параллельных разноименно заряженных плоскостей. поле равномерно заряженной
	сферической поверхности. поле объемно заряженного шара, поле равномерно заряженного
07	бесконечного цилиндра (нити).
67.	Циркуляция вектора напряженности электростатического поля ———————————————————————————————————
68.	Потенциал электростатического поля. Разность потенциалов. Вычисление разности
	потенциалов по напряженности поля (равномерно заряженной бесконечной плоскости, двух бесконечных параллельных разноименно заряженных плоскостей, равномерно заряженной
	сферической поверхности, объемно заряженных плоскостей, равномерно заряженного
	сферической поверхности, объемно заряженного шара, равномерно заряженного бесконечного цилиндра)
69.	Типы диэлектриков. Поляризация диэлектриков
70.	Поляризованность. Напряженность поля в диэлектрике
71.	Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
72.	Условия на границе раздела двух диэлектрических сред
73.	Проводники в электростатическом поле
74.	Электрическая емкость уединенного проводника
7 4 .	Конденсаторы. Соединение конденсаторов. Энергия заряженного конденсатора. Энергия
70.	электростатического поля.
76.	Постоянный электрический ток. Электрический ток, сила и плотность тока
77.	Сторонние силы. Электродвижущая сила и напряжение
78.	Закон Ома. Сопротивление проводников. Закон Ома для неоднородного участка цепи
, 0.	сакон ста. остротивление проводников. оскон ста дли псодпородного участка цени

79.	Работа и мощность тока. Закон Джоуля — Ленца
80.	Правила Кирхгофа для разветвленных цепей
81.	Магнитное поле. Магнитное поле и его характеристики
82.	Закон Био — Савара — Лапласа и его применение к расчету магнитного поля (магнитное
	поле прямого тока, магнитное поле в центре кругового проводника с током)
83.	Закон Ампера. Взаимодействие параллельных токов
84.	Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
85.	Магнитное поле движущегося заряда
86.	Действие магнитного поля на движущийся заряд
87.	Движение заряженных частиц в магнитном поле
88.	Эффект Холла
89.	Циркуляция вектора В магнитного поля в вакууме
90.	Магнитные поля соленоида и тороида
91.	Работа по перемещению проводника и контура с током в магнитном поле
92.	Электромагнитная индукция. Закон Фарадея. Вращение рамки в магнитном поле.
	Индуктивность контура. Самоиндукция. Энергия магнитного поля
93.	Намагниченность. Магнитное поле в веществе
94.	Ферромагнетики и их свойства. Природа ферромагнетизма
95.	Основы теории Максвелла для электромагнитного поля. Вихревое электрическое поле. Ток
	смещения
96.	Уравнения Максвелла для электромагнитного поля
97.	Электромагнитные колебания. Вынужденные колебания. Резонанс.
98.	Переменный ток.(R,L,C,R-L-С цепи)
99.	Переменный ток. Резонанс напряжений. Резонанс токов. Мощность, выделяемая в цепи
	переменного тока
100.	Электромагнитные волны. Дифференциальное уравнение электромагнитной волны.
101.	Геометрическая оптика. Основные законы геометрической оптики. Полное отражение.
	Масса и импульс фотона. Единство корпускулярных и волновых свойств света. Давление
	света.
102.	Линзы. Фокус. Фокусное расстояние. Формула тонкой линзы. Аберрации оптических систем.
103.	Энергетические величины в фотометрии. Световые величины в фотометрии.
104.	Интерференция света. Принцип Гюйгенса. Когерентность. Методы наблюдения
40-	интерференции.
105.	Интерференция света. Расчет интерференционной картины от двух щелей. Полосы
400	равного наклона. Полосы равной толщины. Кольца Ньютона. Просветление оптики.
106.	Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция в сходящихся
	лучах. Дифракция Фраунгофера. Дифракция Фраунгофера на дифракционной решётке.
107	Дифракция на пространственной решетке.
107.	Взаимодействие электромагнитных волн с веществом. Дисперсия света. Электронная
100	теория дисперсии. Поглощение света. Виды спектров поглащения.
108.	Поляризация света. Закон Малюса. Поляризация света при отражении и преломлении. Двойное лучепреломление. Поляризационные призмы. Искусственная оптическая
	анизотропия. Вращение плоскости поляризации.
109.	Квантовая природа излучения. Виды оптических излучений. Тепловое излучение и его
103.	характеристики. Абсолютно черное тело. Закон Кирхгофа. Закон Стефана-Больцмана.
	зарактеристики. Аосолютно черное тело. Закон кирхгофа. Закон Стефана-вольцмана. Закон смещения Вина. Формула Рэлея-Джинса и Вина. Квантовая гипотеза Планка.
110.	Фотоэффект. Законы фотоэффекта.
111.	Масса и импульс фотона. Единство корпускулярных и волновых свойств света. Давление
111.	света.
112.	Эффект Комптона.

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме устного опроса, защиты рефератов выполнения практического задания. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний.

При оценивании используются количественные шкалы оценок. Критерии оценивания приведены выше.