МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ Заведующий кафедрой цифровых технологий

> С.Д.Кургалин 30.06.2018 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.04.Методы вычислений

- 1. Код и наименование направления подготовки/специальности:
- 09.03.02 Информационные системы и технологии
- 2. Профиль подготовки/специализация: для всех профилей
- 3. Квалификация (степень) выпускника: бакалавр
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины: *кафедра цифровых технологий*
- 6. Составители программы: <u>Крыловецкий Александр Абрамович, кандидат</u> физико-математических наук, доцент
- 7. Рекомендована: <u>Научно-методическим советом факультета</u> компьютерных наук Воронежского госуниверситета, протокол №6 от 25.06.18
- 8. Учебный год: 2019-2020 Семестр(ы): 4

9. Цели и задачи учебной дисциплины: изучение основных методов приближенного решения математических задач, их алгоритмизации и реализации на ЭВМ.

10. Место учебной дисциплины в структуре ООП:

для успешного освоения необходимо предварительное изучение следующих дисциплин: математический анализ, дифференциальные уравнения, уравнения математической физики.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

	Компетенция	Планируемые результаты обучения
Код	Название	
ОПК- 1	владением широкой общей подготовкой (базовыми знаниями) для решения практических задач в области информационных систем и технологий	знать: основные методы вычислений, которые используются для построения моделей и конструирования алгоритмов решения практических задач; уметь: применять методы вычислений для решения практических задач;
		владеть: навыками квалифицированного выбора и адаптации существующих методов для решения практических задач.
ОПК- 2	способность использовать основные законы естественнонаучных	Знать: методов вычислений, применяемых для моделирования систем
	дисциплин в профессиональной деятельности, применять	уметь: использовать методы вычислений для решения практических задач
	методы методов вычислений и моделирования, теоретического и экспериментального исследования	владеть (иметь навык(и)): навыками квалифицированного выбора и адаптации существующих методов для решения практических задач

12. Объем дисциплины в зачетных единицах/час. (в соответствии с учебным планом) — 3/180.

Форма промежуточной аттестации(зачет/экзамен) зачет.

13. Виды учебной работы

Durana Sua Xua Sara		Трудоемкость (часы)				
			В том числе в	По семестрам		
Вид учебной работы		Всего	интерактивной форме	4 сем.		
Аудиторные занятия		54		54		
в том числе: лен	сции	18		18		
практичес	кие					
лабораторные		36		36		

Самостоятельная работа	54	54	
3 рубежные аттестации			
Зачет			
Итого:	108	108	

13.1. Содержание дисциплины

Nº ⊓/⊓	Наименование раздела	Содержание раздела дисциплины
11/11	дисциплины	
1	Разностные уравнения	Сеточные функции. Разностные уравнения. Решение краевых задач для уравнений второго порядка. Разностные уравнения как операторные уравнения.
2	Интерполяция и численное интегрирование	Интерполяция и приближение функций. Численное интегрирование.
3	Численное решение систем линейных алгебраических уравнений	Системы линейных алгебраических уравнений. Прямые методы. Итерационные методы. Вариационно-итерационные методы.
4	Разностные методы решения краевых задач для обыкновенных дифференциальных уравнений	Основные понятия теории разностных схем. Однородные трехточечные разностные схемы. Консервативные разностные схемы.
5	Задача Коши для обыкновенных дифференциальных уравнений	Методы Рунге-Кутта. Многошаговые методы. Методы Адамса. Аппроксимация задачи Коши для системы линейных дифференциальных уравнений первого порядка. Устойчивость двухслойной схемы.

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование		Видь	і занятий (часов)	
П/П	раздела дисциплины	Лекции	Лабора-	Самостоятельная	Всего
			торные	работа	
		4 c	еместр		
1	Разностные	2	4	6	12
'	уравнения	_		· ·	12
	Интерполяция и				
2	численное	2	4	6	12
	интегрирование				
3	Численное решение	6	12	18	36
	систем линейных				
	алгебраических				

	уравнений				
4	Разностные методы решения краевых задач для обыкновенных дифференциальных уравнений	4	8	12	24
5	Задача Коши для обыкновенных дифференциальных уравнений	4	8	12	24
Итого		18	36	54	108

14. Методические указания для обучающихся по освоению дисциплины

(рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение практических заданий, тестов, заданий текущей аттестации и т.д.)

При изучении дисциплины рекомендуется использовать следующие средства:

- рекомендуемую основную и дополнительную литературу;
- методические указания и пособия;
- контрольные задания для закрепления теоретического материала;
- электронные версии учебников и методических указаний для выполнения практи-ческих работ. Форма организации самостоятельной работы: подготовка к аудиторным занятиям; выполнение домашних заданий; выполнение контрольных работ.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
1	Бахвалов, Н.С. Численные методы : учебное пособие для студ. физмат. специальностей вузов / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков ; Моск. гос. ун-т им. М.В. Ломоносова. — 6-е изд. — М. : БИНОМ. Лаб. знаний, 2008. — 636 с.
2	Демидович, Б.П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения [Электронный ресурс] : учебное пособие / Б.П. Демидович, И.А. Марон, Э.З. Шувалова. — Электрон. дан. — СПб. : Лань, 2015. — 400 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1_id=537
3	Демидович, Б.П. Основы вычислительной математики [Электронный ресурс] : учебное пособие / Б.П. Демидович, И.А. Марон. — Электрон. дан. — СПб. : Лань, 2011. — 665 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1_id=2025

б) дополнительная литература:

Nº ⊓/⊓	Источник
4	Введение в методы вычислений: конспект лекций и примеры программ: учебное пособие для вузов / А.А. Крыловецкий, Т.А. Крыловецкая, А.В. Атанов, И.С. Черников. — Воронеж: Издательский дом ВГУ, 2015. — 90 с.
5	Киреев, В.И. Численные методы в примерах и задачах [Электронный ресурс] : учебное пособие / В.И. Киреев, А.В. Пантелеев. — Электрон. дан. — СПб. : Лань, 2015. — 448 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?
6	Копченова, Н.В. Вычислительная математика в примерах и задачах [Электронный ресурс] : учебное пособие / Н.В. Копченова, И.А. Марон. — Электрон. дан. — СПб. : Лань, 2009. — 368 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?
6	Самарский, А.А. Численные методы математической физики : [Учебное пособие] / А. А. Самарский, А. В. Гулин. — М. : Научный мир, 2000.

	Самарский, А.А. Введение в численные методы : учебное пособие для вузов / А. А.
7	Самарский ; Моск. гос. ун-т им. М. В. Ломоносова. — Изд. 3-е, стер. — СПб. : Лань,
1	2005. — 288 c.

в)информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

=)····	
	№ п/п	Pecypc
Γ	1.	www.lib.vsu.ru – ЗНБ ВГУ

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1	Демидович, Б.П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения [Электронный ресурс] : учебное пособие / Б.П. Демидович, И.А. Марон, Э.З. Шувалова. — Электрон. дан. — СПб. : Лань, 2015. — 400 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1_id=537

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

нет

18. Материально-техническое обеспечение дисциплины:

(при использовании лабораторного оборудования указывать полный перечень, при большом количестве оборудования можно вынести данный раздел в приложение к рабочей программе) Лекционная аудитория, компьютерный класс с необходимым программным обеспечением.

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание компетенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС* (средства оценивания)
ОПК-1	знать: основные методы вычислений, которые используются для построения моделей и конструирования алгоритмов решения практических задач;	Разделы 1-11	Письменный опрос, КИМ
	уметь: применять методы вычислений для решения практических задач;	Разделы 1-11	Письменный опрос, КИМ
	владеть: навыками квалифицированного выбора и адаптации существующих методов для решения практических задач.	Разделы 1-11	Письменный опрос, КИМ
ОПК-2	знать: методы методов вычислений, применяемые для моделирования систем	Разделы 1-11	Письменный опрос, КИМ
	уметь: использовать методы методов вычислений для решения практических задач	Разделы 1-11	Письменный опрос, КИМ

	владеть (иметь навык(и)): навыками квалифицированного выбора и адаптации существующих методов для решения практических задач	Разделы 1-11	Письменный опрос, КИМ
Промежуточная аттестация			КИМ

^{*} В графе «ФОС» в обязательном порядке перечисляются оценочные средства текущей и промежуточной аттестаций.

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Пример:

Для оценивания результатов обучения на экзамене используются следующие показатели:

- 1) знание основных понятий методов вычислений и его методов, которые используются для построения моделей и конструирования алгоритмов решения практических задач;
- 2) знание постановки классических задач;
- 3) знание методов формулировки и доказательства математическихутверждений;
- 4) умение применять методы методов вычислений для решения задач профессиональной деятельности;
- 5) умение применять аппарат методов вычислений для доказательства утверждений и теорем;
- 6) владение навыками квалифицированного выбора и адаптации существующих методов для решения практических задач решения различных задач;
- 7) владение навыками использования методов решения классических задач методов вычислений для решения различных естественнонаучных задач.

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Полное соответствие ответа обучающегося всем перечисленным критериям. Обучающийся демонстрирует высокий уровень владения материалом, ориентируется в предметной области, верно отвечает на все дополнительные вопросы.	Повышенный уровень	Отлично
Ответ на контрольно-измерительный материал не соответствует одному или двум из перечисленных показателей, но обучающийся дает правильные ответы на дополнительные вопросы. Допускаются ошибки при воспроизведении части теоретических положений.	Базовый уровень	Хорошо
Ответ на контрольно-измерительный материал не соответствует любым трем из перечисленных показателей, обучающийся дает неполные ответы на дополнительные вопросы. Сформированные знания основных понятий, определений и теорем, изучаемых в курсе, не всегда полное их понимание с затруднениями при воспроизведении.	Пороговый уровень	Удовлетвори- тельно
Ответ на контрольно-измерительный материал не соответствует любым четырем из перечисленных показателей. Обучающийся демонстрирует отрывочные знания (либо их отсутствие) основных понятий, определений и теорем, используемых в курсе.	-	Неудовлетвори- тельно

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов:

Перечень вопросов для проведения письменного опроса

по дисциплине <u>Методы вычислений</u> (наименование дисциплины)

Раздел 1. Точность вычислительного эксперимента.

- 1. Числа с плавающей точкой.
- 2. Вычислительные погрешности.

Раздел 2. Численное решение нелинейных уравнений.

Постановка задачи численного решения нелинейных уравнений.

Метод деления отрезка пополам.

Метод хорд.

Метод Ньютона.

Раздел 3. Аппроксимация функций.

- 2. Постановка задачи аппроксимации функций.
- 3. Кусочно-линейная интерполяция.
- 4. Многочлен Лагранжа.
- 5. Многочлен Ньютона.
- 6. Сплайны.
- 7. Точность интерполяции.

Раздел 4. Численное интегрирование.

- 20 Постановка задачи численного интегрирования.
- 21 Метод прямоугольников.
- 22 Метод трапеций.
- 23 Метод Симпсона.
- 24 Метод Гаусса.
 - 25 Точность численного интегрирования.
 - 26 Особые случаи численного интегрирования.
 - 27 Кратные интегралы.

Раздел 5. Решение систем линейных уравнений.

- 1. Основные понятия.
- 2. Методы решения линейных систем.
- 3. Формулы Крамера.
- 4. Метод Гаусса.
- 5. Метод прогонки.
- 6. Метод простой итерации.
- 7. Метод Гаусса-Зейделя.
- 8. Задачи на собственные значения.

Раздел 6. Обыкновенные дифференциальные уравнения.

- 20. Метод Эйлера.
- 21. Метод Эйлера с пересчетом.
- 22. Методы Рунге-Кутта.

Метод Адамса..

19.3.2 Перечень практических заданий

Комплект заданий для контрольной работы

по дисциплине <u>Вычислительный эксперимент и методы вычислений</u> (наименование дисциплины)

Контрольная работа № 1

Вариант 1.

Найти и исправить ошибки, а также заполнить пропуски в алгоритме метода деления отрезка пополам, представленного в форме псевдо-кода:

```
// метод деления отрезка пополам
double f(double x) // f(x)
{
    return exp(1/x)-5;
}
double dihotomia()
```

```
{
    double a = 0;
    double b = __;
    double E = 0.0001;
    double m;

While (abs(a+b)>E) do
    {
        m = (a-b)/2;
        if (f(a)*f(c)<0)
            b = c;
        else
            a = c;
}

return (a-b)/2;
}</pre>
```

Вариант 2.

Найти и исправить ошибки, а также заполнить пропуски в алгоритме метода хорд, представленного в форме псевдо-кода:

```
// метод хорд
double f(double x) // f(x)
{
      return ln(x) + sin(x);
}
double hord()
{
      double x1, x2;
      double a = 0;
      double b =
      double E = \overline{0.0001};
      x2 = a-(b-a)/f(a)*(f(b)-f(a));
      do
            x2 = x1;
            if (f(x1)*f(b)>0)
                   a = x1;
            else
                  b = x1;
            x2 = a-(b-a)/f(a)*(f(b)-f(a));
      } while (abs(x1 - x2) < E);
      return x2;
}
```

Вариант 3.

Найти и исправить ошибки, а также заполнить пропуски в алгоритме метода Ньютона (касательных), представленного в форме псевдо-кода:

```
// метод Ньютона
double f(double x) // f(x)
{
    return ln(x) + 3*sin(x) - 3;
}
double f1(double x) // первая производная f(x)
{
    return ______;
```

```
double f2(double x) // вторая производная f(x)
{
      return _____
}
double newton()
      double x1, x2;
      double a = 2;
      double b =
      double E = \overline{0.0001};
      if (f(a) * f2(a) < 0)
            x1 = a;
      else
            x1 = b;
      do
            x1 = x2;
            x2 = x1 - f(x1)/f1(x1);
      } while ((x1 - x2) > E);
      return x1;
}
```

Контрольная работа № 2

Вариант 1.

Найти и исправить ошибки, а также заполнить пропуски в алгоритмах методов, представленных в форме псевдо-кода:

```
// кусочно-линейная интерполяция
double lin(double *x, double *y, int n, double z)
// n - количество узлов интерполяции
// z - точка, в которой ищем значение интерполирующей функции
{
     int i = 0;
     While (z < x[i]) do
           i++;
      }
     double a = (y[i+1]-y[i])/(x[i+1]-x[i]);
     double b = y[i]-a*x[i];
     return a*x + b;
}
// метод Симпсона
float f(float x);
float Simpson(float a, float b, float h)
     float S = 0;
     for (float x=a; x<b-h; x+=2*h)
           S = 4*f(x) + 2*f(x+h);
     return (h/3) *S;
}
```

Вариант 2.

Найти и исправить ошибки, а также заполнить пропуски в алгоритмах методов, представленных в форме псевдо-кода:

```
// интерполяция многочленом Ньютона
float delta(int k,int i)
{
      if (k=0)
            return (y[i+1]-y[i]);
      else
            return (delta(k-1,i+1)-delta(k-1,i));
}
float N(float *x, float *y, int n, float h, float c)
// n - количество узлов интерполяции
// с - точка, в которой ищем значение интерполирующей функции
{
     N=y[0];
     float m = 0;
      float z = 0;
      for (int k=1; k< n; k++)
           m \neq c-x[k];
            z *= (k+1)*h;
           N += delta(k, 0) *m/z;
     return N;
}
// метод прямоугольников
float f(float x);
float Rect(float a, float b, float h)
{
      float S = 1;
      for (float x=a+h; x \le b; x+=h)
            S += f(x+h/2);
     return S;
}
```

Вариант 3.

Найти и исправить ошибки, а также заполнить пропуски в алгоритмах методов, представленных в форме псевдо-кода:

```
// интерполяция многочленом Ньютона
float delta(int k,int i)
{
     if (k=1)
            return (y[i]-y[i-1]);
     else
            return (delta(k-1,i)-delta(k-1,i-1));
}
float N(float *x, float *y, int n, float h, float c)
// n - количество узлов интерполяции
// с - точка, в которой ищем значение интерполирующей функции
{
     N=y[1];
      float m = 1;
      float z = 1;
      for (int k=1; k \le n; k++)
      {
           m = c-x[k-1];
           z = k*h;
           N += delta(k-1,0)*m/z;
      return N;
```

```
}
// метод трапеций
float f(float x);

float Trap(float a, float b, float h)
{
    float S = a;
    for (float x=a; x<b; x+=h)
        S += f(x);
    return S+h*(f(a)+f(b));
}</pre>
```

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: письменного опроса и контрольных работ. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования, а также в соответствии с Положением о балльно-рейтинговой системе контроля знаний на факультете компьютерных наук ВГУ.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний.

При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.