Аннотации рабочих программ дисциплин

Б1.О.01 Профессиональное общение на иностранном языке

Общая трудоёмкость дисциплины: 4 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

– УК-4: УК-4.1, УК-4.5.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: повышение уровня владения иностранным языком, достигнутого в бакалавриате, овладение иноязычной коммуникативной компетенцией на уровне B1+ (B2) для решения коммуникативных задач в учебно-познавательной и профессиональной сферах общения; обеспечение основ научного общения и использования иностранного языка для самообразования в выбранном направлении.

Задачи учебной дисциплины: воспринимать на слух и понимать содержание аутентичных профессионально-ориентированных текстов по заявленной проблематике (лекции, выступления, устные презентации) и выделять в них значимую/запрашиваемую информацию; понимать содержание аутентичных профессионально-ориентированных научных текстов (статья, реферат, аннотация, тезисы) и выделять из них значимую/запрашиваемую информацию; выступать с устными презентациями по теме исследования, соблюдая нормы речевого этикета, задавать вопросы и отвечать на них, высказывать свое мнение, при необходимости используя стратегии восстановления сбоя в процессе коммуникации (переспрос, перефразирование и др.); кратко излагать основное содержание научного выступления; корректно (в содержательно-структурном, композиционном и языковом плане) оформлять слайды презентации.

Форма промежуточной аттестации – экзамен.

Б1.О.02 Коммуникативные технологии профессионального общения

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

- YK-4: YK-4.1, YK-4.2, YK-4.3, YK-4.4, YK-4.5, YK-4.6.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: овладение коммуникативными технологиями, используемыми в академической и профессиональной деятельности; изучение методологии гуманитарной науки для решения профессиональных проблем.

Задачи учебной дисциплины: формирование умения выстраивать прогностические сценарии и модели развития коммуникативных ситуаций (деловых бесед, совещаний, переговоров, пресс-конференций, международных научных и бизнес-форумов); выработка умения представлять результаты академической и профессиональной деятельности на различных публичных мероприятиях, включая международные, выбирая наиболее подходящий коммуникативный формат на государственном языке; освоение норм и лексики русского литературного языка применительно к академической и профессиональной деятельности; формирование навыка корректировать собственную профессиональную и академическую деятельность с учетом требований деловой коммуникации, а также ориентиров и норм, налагаемых современной культурой.

Форма промежуточной аттестации – зачёт.

Б1.О.03 Теория систем и системный анализ

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

– УК-1: УК-1.1, УК-1.2.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: .

Задачи учебной дисциплины: .

Форма промежуточной аттестации – зачёт.

Б1.О.04 Проектный менеджмент

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

- YK-2: YK-2.1, YK-2.2, YK-2.3, YK-2.4, YK-2.5;
- YK-3: YK-3.1, YK-3.2, YK-3.3, YK-3.4, YK-3.5.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: получение теоретических и практических знаний в области проектного менеджмента и формирование управленческого мышления, способствующего в дальнейшем организовывать командную работу в коллективе и управлять проектом на всех этапах его жизненного цикла.

Задачи учебной дисциплины: изучение теоретических и практических основ в области проектного менеджмента; формирование представлений о методологии управления проектами, в том числе в ІТ-сфере; освоение различных инструментов управления проектами и способов оценки эффективности проекта; формирование навыков, необходимых для инициализации, реализации и внедрения проектов, в том числе в ІТ-сфере; получение знаний и приобретение практических навыков организации командной работы.

Форма промежуточной аттестации – зачёт.

Б1.О.05 Разнообразие культур в процессе межкультурного взаимодействия

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

- YK-5: YK-5.1, YK-5.2, YK-5.3.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: выработать готовность к профессиональной коммуникации в условиях мультиэтнического общества и мультиэтнической культуры; обеспечивать создание недискриминационной среды взаимодействия при выполнении профессиональных задач.

Задачи учебной дисциплины: дать представления о требованиях, предъявляемых современной культурой, к профессиональной деятельности; познакомить магистрантов со спецификой межкультурного взаимодействия в условиях современного мультиэтнического и мультикультурного общества; формировать понимание социокультурных традиций этникокультурных групп современного общества и толерантное отношение к ним.

Форма промежуточной аттестации – зачёт.

Б1.О.06 Современные теории и технологии развития личности

Общая трудоёмкость дисциплины: 3 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

- YK-3: YK-3.1, YK-3.2, YK-3.3, YK-3.4, YK-3.5;
- YK-6: YK-6.1, YK-6.2, YK-6.3, YK-6.4.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: формирование у магистрантов систематизированных научных представлений, практических умений и компетенций в области современных теорий личности и технологий её развития.

Задачи учебной дисциплины: усвоение магистрантами системы знаний об современных теориях личности и технологиях ее развития как области психологической науки, о прикладном характере этих знаний в области их будущей профессиональной деятельности; формирование у студентов умений, навыков и компетенций, направленных на развитие и саморазвитие личности профессионала; укрепление у обучающихся интереса к глубокому и детальному изучению современных теорий личности и технологий её развития, практическому применению полученных знаний, умений и навыков в целях собственного развития, профессиональной самореализации и самосовершенствования.

Форма промежуточной аттестации – зачёт.

Б1.О.07 Механика деформируемого твердого тела

Общая трудоёмкость дисциплины: 4 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их лостижения:

-ОПК-1.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целью дисциплины являются передача магистрантам теоретических знаний и выработка у них практических навыков и умений, позволяющих решать сложные задачи в области механики деформируемого твердого тела с единых методологических позиций на основе общесистемной проработки всего комплекса вопросов с использованием методов моделирования.

Задачи учебной дисциплины: Задачей изучения дисциплины является обоснованный выбор моделей описывающих напряженно деформированное состояния (НДС) исследуемого объекта, аналитических и численных методов анализа этих моделей для конкретных взаимодействий и способом нагружения.

Форма промежуточной аттестации – экзамен.

Б1.О.08 Современные проблемы теории упругости

Общая трудоёмкость дисциплины: 5 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

-ОПК-1, ПКВ-1.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целью дисциплины является ознакомить студентов с развитием новых направлений: физика кристаллов, механика разрушений и т.д., опирающихся на результаты теории упругости. В практических задачах машиностроения наиболее часто возникает необходимость учитывать именно упругие свойства материала, что делает теорию упругости неотъемлемой частью подготовки инженера-конструктора и инженера-исследователя.

Задачи учебной дисциплины: научить студентов методике построения математических моделей на основе теории упругости, с учетом новых направлений механики, решению полученных задач новыми методами с использованием современного программного обеспечения и анализу полученных результатов.

Форма промежуточной аттестации – экзамен.

Б1.О.09 Современные проблемы теории пластичности

Общая трудоёмкость дисциплины: 3 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

-ОПК-1, ПКВ-1.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целью курса является ознакомление с современным состоянием теории пластичности, построением сложных математических моделей пластических сред, используемым математическим аппаратом, аналитическими и численными методами решения краевых задач, технологической теорией обработки металлов давлением.

Задачи учебной дисциплины: научить студентов методике построения математических моделей на основе теории пластичности, с учетом новых направлений механики, решению полученных задач новыми методами с использованием современного программного обеспечения и анализу полученных результатов.

Форма промежуточной аттестации – экзамен.

Б1.О.10 Современные проблемы гидрогазодинамики

Общая трудоёмкость дисциплины: 3 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

-ОПК-1, ПКВ-1.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Изучение подходов, методов и способов теоретического исследования движения жидких и газообразных сред.

Задачи учебной дисциплины: научить студентов методике построения математических моделей на основе гидродинамики и газодинамики, с учетом новых направлений механики, решению полученных задач новыми методами с использованием современного программного обеспечения и анализу полученных результатов.

Форма промежуточной аттестации – зачет, зачет с оценкой.

Б1.О.11 Математическое моделирование и компьютерный эксперимент

Общая трудоёмкость дисциплины: 4 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

- -ОПК-2, ОПК-3;
- -ПКВ-2, ПКВ-3.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Формирование знаний, умений и компетенций в области математического моделирования различных сложных механических, физических, биологических и других систем.

Задачи учебной дисциплины: овладение современными технологиями составления, решения и анализа математических моделей; овладение навыками декомпозиции, абстрагиро-

вания при решении практических задач в различных областях профессиональной деятельности.

Форма промежуточной аттестации – экзамен.

Б1.О.12 Стохастические модели в неоднородной теории упругости

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

−OΠK-2.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Изучение основ, методов и способов теоретического исследования разнообразных моделей неоднородно упругих сред с использованием аппарата теории случайных процессов.

Задачи учебной дисциплины: Задачей дисциплины является изучение вероятностного подхода к построению физической и математической моделей неоднородного конструкционного материала; знакомство с различными видами композиционных материалов.

Форма промежуточной аттестации – экзамен.

Б1.О.13 Имитационное моделирование

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

−OΠK-2.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целью дисциплины является знакомство с понятием имитационного моделирования, его математическим аппаратом и областями применения.

Задачи учебной дисциплины: Научить студентов обоснованию, формулированию и конструированию имитационной модели, а также методам решения и анализа с использованием программных средств имитационного моделирования.

Форма промежуточной аттестации – зачет.

Б1.О.14 Информационные технологии в механике

Общая трудоёмкость дисциплины: 4 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

 $-O\Pi K-4.$

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целями освоения дисциплины «Информационные технологии в механике» являются: обучение студентов методам использования современных компьютерных пакетов для построения геометрических моделей, конечно-элементных сеток и их приложения к современным задачам.

Задачи учебной дисциплины: Ознакомить с существующими методами построения геометрических моделей, конечно-элементных сеточных моделей, с современными тенденциями развития пакетов инженерного анализа; научить современным пакетам программ для построения геометрии области решения задачи и их сеточных дискретизаций, извлекать необходимую информацию из электронных библиотек, сети Интернет и т.п., навыками построения геометрии области решения задачи и сеточных аппроксимаций для решения задач механики.

Форма промежуточной аттестации – зачет, зачет с оценкой.

Б1.О.15 Применение микропроцессорной техники в механических моделях

Общая трудоёмкость дисциплины: 3 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

–OΠK**-**3.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Курс направлен на формирование у студента понимания основных аспектов построения и функционирование современной микропроцессорной техники, а также получения начальных навыков работы на низком уровне.

Задачи учебной дисциплины: ознакомить с базовыми элементами архитектуры современных ЭВМ и их характеристиками, основными принципами хранения и преобразования информации в ЭВМ, перспективными направлениями дальнейшего развития компьютерных систем; научить реализовывать алгоритмы решения различных задач и пути повышения эффективности вычислительных систем.

Форма промежуточной аттестации – экзамен.

Б1.О.16 Методика преподавания математики и механики

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

ΟΠΚ-5.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины: Курс направлен на формирование у магистров навыков педагогической работы и применение ее в области механики.

Задачи учебной дисциплины: Задачей дисциплины является обучение студентов методикам преподавания математики и механики, а также использованию знаний по математическим и механическим дисциплинам, читаемых по направлению механика и математическое моделирование.

Форма промежуточной аттестации – зачет.

Б1.В.01 Метод конечных элементов в нелинейных задачах

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

–ПКВ-5.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: изучение применения МКЭ к нестационарным и нелинейным задачам МДТТ.

Задачи учебной дисциплины: сформировать навыки постановки математической задачи и реализации её компьютерными средствами.

Форма промежуточной аттестации – зачет.

Б1.В.02 Теория разрушения

Общая трудоёмкость дисциплины: 3 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

 $-\Pi KB-5.$

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целями освоения дисциплины «Теория разрушения» являются: изучение фундаментальных понятий механики разрушения и их приложения к современным задачам.

Задачи учебной дисциплины: овладеть теоретическим основами механики разрушения, сформировать навыки решения задач хрупкого разрушения, упругопластического разрушения, усталостного разрушения, разрушения с позиции теории устойчивости.

Форма промежуточной аттестации – экзамен.

Б1.В.03 Спецсеминар по механике деформируемого твердого тела

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

−ПКВ-4.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целями освоения дисциплины «Спецсеминар по МДТТ» являются: изучение современного состояния научных исследований по направлению (теме) магистерской диссертации и их приложений к поставленной задаче.

Задачи учебной дисциплины: формирование у студентов умений, навыков составления обзора научных работ по теме магистерских диссертаций и обоснования места магистерской диссертации среди данного научного направления. Выбор и обоснование методов решения поставленных задач, а также навыков представления основных текущих результатов исследования по теме диссертации.

Форма промежуточной аттестации – зачет.

Б1.В.04 Математическое модели механики композитов

Общая трудоёмкость дисциплины: 3 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

−ПКВ-5.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целями освоения дисциплины являются: изучение современного состояния научных исследований по направлению механика композитов и их приложений в прикладных инженерных задачах.

Задачи учебной дисциплины: Задачей дисциплины является изучение вероятностного подхода к построению физической и математической моделей композиционного материала; знакомство с различными видами композитов.

Форма промежуточной аттестации – экзамен.

Б1.В.05 IT-моделирование в прикладных исследованиях

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

–ПКВ-2, ПКВ-3, ПКВ-6.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Изучение методов разработки программного обеспечения для проведения вычислительного эксперимента; использование современных систем инженерного анализа для решения задач механики.

Задачи учебной дисциплины: Задачей дисциплины является изучение компьютерных систем и информационных технологий в прикладной математике, механике и инженерноконструкторской практике, формирование навыков структурного и объектного подхода при анализе, моделировании и проектировании информационных систем инженерного и научного анализа, осуществление поиска профессиональной информации в глобальной компьютерной сети.

Форма промежуточной аттестации – зачет.

Б1.В.06 Компьютерный практикум по механике

Общая трудоёмкость дисциплины: 4 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

-ПКВ-6, ПКВ-7.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целью учебной дисциплины является укрепление знаний студентов-механиков в области объектно-ориентированного программирования и ознакомление с современными системами и библиотеками графического программирования.

Задачи учебной дисциплины: Задачей является применение данных систем для решения прикладных задач механики.

Форма промежуточной аттестации – зачёт.

Б1.В.ДВ.01.01 Численные методы и алгоритмы в механике деформируемого твердого тела

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

−ОПК-4.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1 и является дисциплиной по выбору.

Цель изучения дисциплины: Изучение студентами соотношения точных методов, приближенных методов, и численных методов и алгоритмов решения задач МДТТ.

Задачи учебной дисциплины: Формирование у студента комплексного подхода к выбору вычислительного алгоритма, исходя из точности и потребного на расчет времени.

Форма промежуточной аттестации – зачёт.

Б1.В.ДВ.01.02 Асимптотические методы в механике

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

 $-O\Pi K-2$.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1 и является дисциплиной по выбору.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Изучение и освоение асимптотической теории и методов возмущений, приложений асимптотической теории к задачам механики деформируемого твердого тела и механики жидкости и газа.

Задачи учебной дисциплины: формирование навыков самостоятельного использования слушателями математического аппарата асимптотической теории и методов возмущений на всех стадиях научной и практической деятельности, включая этапы постановки задачи (включающей малый параметр), выбора адекватного асимптотического метода, анализа получаемой асимптотической модели.

Форма промежуточной аттестации – зачёт.

Б1.В.ДВ.01.03 Основы конструктивного взаимодействия

лиц с ограниченными возможностями здоровья в образовательном процессе

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

-УК-4.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1 и является дисциплиной по выбору.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: теоретическая и практическая подготовка студентов с ограниченными возможностями здоровья в области коммуникативной компетентности.

Задачи учебной дисциплины: изучение техник и приемов эффективного общения; формирование навыков активного слушания, установления доверительного контакта, преодоления коммуникативных барьеров, использования различных каналов для передачи информации в процессе общения; развитие творческих способностей студентов в процессе тренинга общения.

Форма промежуточной аттестации – зачёт.

Б1.В.ДВ.02.01 Моделирование физических процессов в системах компьютерной математики

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

−ОПК-4.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1 и является дисциплиной по выбору.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Изучение и освоение методов моделирования физических и математических задач, приобретение навыков самостоятельной их реализации на персональных компьютерах в системах компьютерной математики.

Задачи учебной дисциплины: формирование навыков самостоятельного использования современных пакетов компьютерной математики и анализа решения задач механики сплошных сред

Форма промежуточной аттестации – зачёт.

Б1.В.ДВ.02.02 Кинематико-геометрическое моделирование

Общая трудоёмкость дисциплины: 2 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

−OΠK-2.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1 и является дисциплиной по выбору.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Целями освоения дисциплины являются: изучение методов математического моделирования на основе кинематико-геометрического подхода в задачах механики твердого деформируемого тела.

Задачи учебной дисциплины: освоение методов математического моделирования на основе кинематико-геометрического подхода в задачах механики твердого деформируемого тела, а также кинематико-геометрическому подходу в теории кривых и поверхностей, в теории аппроксимации, в интегрировании.

Форма промежуточной аттестации – зачёт.

Б1.В.ДВ.02.03 Психолого-педагогическое сопровождение лиц с ограниченными возможностями здоровья

Общая трудоёмкость дисциплины: 3 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

-УК-6.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к формируемой участниками образовательных отношений части Блока 1 и является дисциплиной по выбору.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: сформировать комплекс знаний, умений и навыков, обеспечивающих готовность к совместной деятельности и межличностного взаимодействия субъектов образовательной среды вуза; научить учащихся с ограниченными возможностями здоровья правильно ориентироваться в сложном взаимодействии людей и находить верные решения в спорных вопросах.

Задачи учебной дисциплины: отработать навыки диагностики и прогнозирования конфликта, управления конфликтной ситуацией, а также навыков ведения переговоров и управления переговорным процессом в образовательной среде вуза; сформировать представления о различных подходах к разрешению конфликтов в образовательной среде вуза, осознание механизмов и закономерностей переговорного процесса; ставить задачи самоизменения в общении и решать их, используя полученный опыт; проектировать атмосферу для конструктивного взаимодействия.

Форма промежуточной аттестации – зачёт.

ФТД.01 История и методология механики

Общая трудоёмкость дисциплины: 1 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

- OПK-1.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина относится к обязательной части Блока 1.

Цели и задачи учебной дисциплины: Ознакомление студентов с историей и методологией механики как науки, с фундаментальными законов природы и общества, составляющих основу современных наук, которые являются результатом обобщения отдельных закономерностей различных дисциплин.

Задачи учебной дисциплины: Задачей дисциплины является демонстрация студентам реальных вариантов методического использования знаний по механическим дисциплинам, читаемых по направлению механика и математическое моделирование.

Форма промежуточной аттестации – зачет.

ФТД.02 Физико-химическая механика

Общая трудоёмкость дисциплины: 1 з.е.

Дисциплина направлена на формирование следующих компетенций и индикаторов их достижения:

-ОПК-2.

Место учебной дисциплины в структуре ОПОП: учебная дисциплина является факультативом.

Цели и задачи учебной дисциплины:

Цель изучения дисциплины: Изучение принципов и методов построения математических моделей для процессов и явлений, изучаемых в гидродинамики с учетом физико-химических процессов, и их применение для решения современных инженерно-технических задач с помощью вычислительного эксперимента.

Задачи учебной дисциплины: ознакомить с основными закономерностями и особенностями использования компьютерного эксперимента при моделировании сложных процессов и явлений, отработать навыки использования пакетов программ для проведения компьютерного эксперимента.

Форма промежуточной аттестации – зачёт.

Аннотации программ учебной и производственной практик

Б2.О.01(П) Производственная практика, научно-исследовательская работа

Общая трудоёмкость практики: 24 з.е.

Практика направлена на формирование следующих компетенций и индикаторов их достижения:

- −ОПК-1, ОПК-2, ОПК-4;
- -ПКВ-1, ПКВ-2, ПКВ-3, ПКВ-4.

Место практики в структуре ОПОП: практика относится к обязательной части Блока 2. Цели и задачи практики:

Цель практики: получение первичных профессиональных умений и навыков научно-исследовательской деятельности.

Задачи практики: получить первичные профессиональные навыки: работы с научной литературой; участия в научно-исследовательских проектах в соответствии с профилем объекта профессиональной деятельности; применение математических методов и алгоритмов вычислительной математики при решении задач механики и анализе прикладных проблем; участие в проведении компьютерного эксперимента; контекстная обработка общенаучной и научно-технической информации, анализ и синтез информации; проведение научно-исследовательских работ в области механики и математического моделирования; участия в работе научных семинаров, научно-тематических конференций, симпозиумов; подготовки научных и научно-технических публикаций.

Тип практики: производственная, научно-исследовательская работа.

Способ проведения практики: стационарная.

Форма проведения практики: производственная практика проводится в структурных подразделениях университета и в организациях на основе договоров, заключаемых между Университетом и организациями, деятельность которых соответствует направленности реализуемой образовательной программы по соответствующему профилю.

Разделы (этапы) практики: организационно-подготовительный (участие в установочном собрании по практике; подготовка документов, подтверждающих факт направления на практику; выбор темы исследования; получение задания от руководителя практики; производственный инструктаж; инструктаж по технике безопасности); аналитический (сбор, обработка и систематизация практического материала для выполнения задания по практике; анализ собранных материалов; выполнение производственных заданий; участие в решении конкретных профессиональных задач; обсуждение с руководителем проделанной части работы); отчётный (подготовка отчетной документации, защита отчета).

Форма промежуточной аттестации – зачёт с оценкой.

Б2.В.01(У) Учебная практика, ознакомительная

Общая трудоёмкость практики: 3 з.е.

Практика направлена на формирование следующих компетенций и индикаторов их достижения:

-ПКВ-5, ПКВ-6, ПКВ-7.

Место практики в структуре ОПОП: практика относится к формируемой участниками образовательных отношений части Блока 2.

Цели и задачи практики:

Цель практики: получение первичных профессиональных умений и навыков, в том числе первичных умений и навыков научно-исследовательской деятельности. В результате ознакомительной практики студент получает информацию для правильного выбора в будущем своих конкретных профессиональных интересов и приоритетов. Практика направлена на закрепление, расширение, углубление и систематизацию знаний.

Задачи практики: ознакомление с различными видами производственной деятельности; развитие практических навыков использования и разработки систем визуализации результатов компьютерного эксперимента, применяемых на производстве; получение навыков практической работы на оборудовании и с графическими средствами, обеспечивающих создание геометрических моделей и приемов визуализации результатов вычислений, используемых в организации.

Тип практики: учебная ознакомительная.

Способ проведения практики: стационарная.

Форма проведения практики: ознакомительная практика, как правило, проводится в учебных, учебно-производственных, учебно-опытных лабораториях, других вспомогательных объектах вуза, на базе информационно-вычислительного центра вуза и на передовых предприятиях машиностроения и ракетно-космической отрасли.

Разделы (этапы) практики: организация практики (установочный инструктаж по задачам, срокам и требуемой отчетности, инструктаж по технике безопасности работы с персональными компьютерами, правилами работы в компьютерных классах факультета), подготовительный этап (содержательная формулировка задач для решения в ходе практики, вида и объема результатов, которые должны быть получены, библиографический поиск, изучение литературы), научно-исследовательский и/или производственный этап (постановка задачи, выбор методов построения модели и решения, сбор и предварительная обработка исходных данных, проведение расчётов), анализ результатов, подготовка отчета, подведение итогов (предоставление и защита отчёта по практике).

Форма промежуточной аттестации – зачёт с оценкой.

Б2.В.02(П) Производственная практика, проектная

Общая трудоёмкость практики: 6 з.е.

Практика направлена на формирование следующих компетенций и индикаторов их достижения:

- YK-2;
- $-O\Pi K-4;$
- -ПКВ-5, ПКВ-6, ПКВ-7.

Место практики в структуре ОПОП: практика относится к формируемой участниками образовательных отношений части Блока 2.

Цели и задачи практики:

Цель практики: получить опыт работы в проектах в составе команд, образованных для обработки экспериментальных данных, статистического анализа данных и их визуализации. Использование ППП для исследования математических моделей и создания визуального отображения различных зависимостей. Закрепление и освоение навыков решения задач профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований заказчика.

Задачи практики: изучить методологии обработки экспериментальных данных, статистического анализа данных и их визуализации; разрабатывать компоненты информационного, программного, технического и технологического обеспечений, включая описание и создание нормативно-справочной, оперативной информации и результатных данных, применять пакеты прикладных программ в зависимости от условий задачи, проводить оценку внедрения проекта и осуществлять анализ полученных результатов, разрабатывать планы выполнения проектных работ.

Тип практики: производственная проектная.

Способ проведения практики: стационарная.

Форма проведения практики: проектная практика, как правило, проводится в учебных, учебно-производственных, учебно-опытных лабораториях, других вспомогательных объектах вуза, на базе информационно-вычислительного центра вуза и на передовых предприятиях машиностроения и ракетно-космической отрасли.

Разделы (этапы) практики: организация практики (установочный инструктаж по задачам, срокам и требуемой отчетности, инструктаж по технике безопасности работы с персональными компьютерами, правилами работы в лабораториях факультета), подготовительный этап (содержательная формулировка задач для решения в ходе практики, вида и объема результатов, которые должны быть получены, библиографический поиск, изучение литературы), научно-исследовательский и/или производственный этап (постановка задачи, выбор методов построения модели и решения, сбор и предварительная обработка исходных данных, проведение расчётов), анализ результатов, подготовка отчета, подведение итогов (предоставление и защита отчёта по практике).

Форма промежуточной аттестации – зачёт с оценкой.

Б2.В.03(П) Производственная практика, технологическая

Общая трудоёмкость практики: 6 з.е.

Практика направлена на формирование следующих компетенций и индикаторов их достижения:

- -УK-3;
- $-O\Pi K-3;$
- -ПКВ-5, ПКВ-6, ПКВ-7.

Место практики в структуре ОПОП: практика относится к формируемой участниками образовательных отношений части Блока 2.

Цели и задачи практики:

Цель практики: закрепление и расширение полученных знаний, приобретение необходимых практических навыков проектирования, внедрения и сопровождения расчетные исследования в области механики сплошных сред, прочности основных конструкционных элементов, используемых в различных областях машиностроения, при воздействии силовых факторов на основе современных методов.

Задачи практики: получить опыт работы в проектах в составе команд, проводящих расчетные исследования, изучить методические, инструктивные и нормативные материалы предприятий; закрепить и освоить навыки решения задач профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований безопасности; изучить методы создания и исследования новых практически-ориентированных математических моделей с учетом возможностей современных информационных технологий, программирования и компьютерной техники; закрепить и освоить технологии обработки и анализа данных.

Тип практики: производственная технологическая.

Способ проведения практики: стационарная.

Форма проведения практики: производственная практика проводится в организациях на основе договоров, заключаемых между Университетом и организациями, деятельность которых соответствует направленности реализуемой образовательной программы по соответствующему профилю.

Разделы (этапы) практики: подготовка документов, подтверждающих факт направления на практику; выбор темы исследования; получение задания от руководителя практики; производственный инструктаж; инструктаж по технике безопасности); аналитический (сбор, обработка и систематизация практического материала для выполнения задания по практике; анализ собранных материалов; выполнение производственных заданий; участие в решении конкретных профессиональных задач; обсуждение с руководителем проделанной части работы); отчётный (подготовка отчетной документации, защита отчёта).

Форма промежуточной аттестации – зачёт с оценкой.