МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой вычислительной математики и прикладных информационных технологий (ВМиПИТ)

М. Леденева 22.03.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.O.22 Прикладная теория графов

1. Код и наименование направления подготовки/специальности: 02.03.02 Фундаментальная информатика и информационные технологии

2. Профиль подготовки/специализация: Инженерия программного обеспечения

3. Квалификация выпускника: бакалавр

4. Форма обучения: очная

5. Кафедра, отвечающая за реализацию дисциплины: кафедра вычислительной математики и прикладных информационных технологий (ВМиПИТ)

6. Составитель программы: Леденева Татьяна Михайловна, д.т.н., профессор кафедры ВМ и ПИТ факультета ПММ

7. Рекомендована: НМС факультета ПММ 22.03.2024г., протокол №5.

8. Учебный год: 2025/2026 **Семестр**: 4

9. Цели и задачи учебной дисциплины:

Цель учебной дисциплины: сформировать у обучающихся комплекс теоретических знаний по основным разделам прикладной теории графов и практические навыки построения графовых моделей для сложных систем и объектов.
Задачи учебной дисциплины:

- ознакомление с основными характеристиками и инвариантами графов, а также классами прикладных задач, в которых в качестве модели используется граф;
- изучение основных типов задач на графах, методов и алгоритмов их решения;
- формирование навыков моделирования прикладных задач с помощью аппарата теории графов, а также анализа полученных результатов.
- **10. Место учебной дисциплины в структуре ООП:** Дисциплина «Прикладная теория графов» входит в обязательную часть учебного плана и изучается в 4 семестре.

11. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.	ОПК-1.1	Решает типовые задачи с учетом основных понятий и общих закономерностей, сформулированных в рамках базовых дисциплин математики, информатики и естественных наук.	Знать: терминологическую базу теории графов, основные постановки задач на графах. Уметь: вычислять основные характеристики и инварианты графов. Владеть: методами решения задач на графах.
ОПК-1		ОПК-1.2	Применяет системный подход и математические методы для формализации решения прикладных задач.	Знать: основные принципы системного подхода и особенности его реализации при использовании математического аппарата теории графов. Уметь: определить для конкретной задачи возможность использования модели в виде графа при ее формализации. Владеть: методами структурного анализа сложных объектов с использованием графов.
ОПК-3	Способен к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных базданных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям.	ОПК-3.1	Владеет методами теории алгоритмов, методами системного и прикладного программирования, основными положениями и концепциями в области математических, информационных и имитационных моделей.	Знать: основные подходы к построению математических моделей на основе теории графов. Уметь: строить математические модели на основе теории графов и использовать соответствующие алгоритмы для нахождения и анализа решения. Владеть: навыками интерпретации результатов моделирования с использованием графов.

12. Объем дисциплины в зачетных единицах/час. – 3/108. **Форма промежуточной аттестации:** зачет.

13. Трудоемкость по видам учебной работы:

ioi ipypoomioois no siipum y ioonoi paooisii				
Вид учебной работы		Трудоемкость		
		Всего	По семестрам	
			4 семестр	
Контактная ра	Контактная работа		64	
B 7014 11140 F01	Лекции	32	32	
в том числе:	Практические занятия	32	32	
Самостоятельная работа		44	44	
Итого		108	108	

13.1 Содержание разделов дисциплины:

	содержание р	азделов дисциплины:	
№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализа- ция разде- ла дисци- плины с помощью онлайн- курса, ЭУМК
		1. Лекции	
1.1	Основные понятия теории графов	Основные понятия теории графов. Типы графов. Изоморфизм и инварианты. Операции на графах. Матрицы, ассоциированные с графом. Кодирование графов. Степенные последовательности. Критерий графичности последовательности. Реализация графических последовательностей графами с определенными свойствами. Лемма о пересчете помеченных графов. Число помеченных деревьев (теорема Кэли).	
1.2	Достижимость и связность	Матрицы достижимости и контрдостижимости. Определение сильных компонент. Базы и антибазы орграфа. Конденсация и ее свойства. Задачи, связанные с ограниченной достижимостью. Бесконтурные графы и их свойства.	
1.3	Устойчивые множества графов	Устойчивые множества в графе: независимые, доминирующие. Оценки для числа независимости графа. Интерпретация независимых множеств. Ядро и признаки его существования. Логический метод определения устойчивых множеств. Алгоритмы определения ядра для некоторых специальных графов. Независимость и покрытия. Клики и кликовое число. Паросочетания. Задача о назначениях.	
1.4	Задача раскраски	Вершинная и реберная раскраска графа. Критерий Кенига. Оценки для хроматического числа. Хроматический многочлен графа. Проблема четырех красок. Приближенные алгоритмы раскрашивания.	moodle (Приклад- ная теория графов)
1.5	Древовидные структуры	Дерево и остов. Свойства деревьев. Теорема Кирхгофа о деревьях. Задача о кратчайшем остове. Задача Штейнера.	edu.vsu.ru
1.6	Обходы и элементы цикломатики	Поиск в глубину и поиск в ширину. Конструирование алгоритмов на основе поисковых процедур. Циклы и разрезы. Разложение бесконтурного графа на уровни. Иерархические структуры. Эйлеровы графы. Критерии эйлеровости связного графа. Метод Флери. Гамильтоновы графы. Признак гамильтоновости графа. Алгебраический метод построения гамильтоновых путей и контуров. Метод перебора Робертса и Флореса. Задача коммивояжера.	
1.7	Экстремальные задачи на графах	Экстремальные задачи на графах: задача о кратчайшем пути (алгоритмы фронта волны и Дейкстры), задача о критическом пути, задача о максимальном потоке и минимальном разрезе (алгоритм Форда – Фалкерсона). Центры и медианы графа. Абсолютный центр. Метод Хакими. Приложение к задачам размещения.	
1.8	Приложения теории графов	Графы как модели программ, процессов и информационных структур. Знаковые графы и теория структурного баланса. Приложения к анализу сложных систем. Задача управления проектами.	
		2. Практические занятия занятия	
2.1	1.1, 1.3, 1.4, 1.5	Определение основных характеристик и инвариантов графа.	moodle
2.2	1.2, 1.3, 1.4, 1.8	Граф как инструмент моделирования (структурный анализ и построение иерархий; задача о назначениях; распараллеливание процессов; сбалансированность структур).	(Приклад- ная теория графов) edu.vsu.ru
2.3	1.5, 1.6	Конструирование алгоритмов на основе поисковых процедур.	544.V64.I4
	·		·

2.6	1.7	Экстремальные задачи на графах (календарное планиро-	
		вание при управлении проектом; размещение центров об-	
		служивания).	

13.2. Темы (разделы) дисциплины и виды занятий:

Nº	Наименование	Виды занятий (часов)				
п/п	раздела дисциплины	Лекции	Практические занятия	Самостоятельная работа	Всего	
1.1	Основные понятия теории графов	2	4	4	10	
1.2	Достижимость и связность	2	4	4	10	
1.3	Устойчивые множества в графе	2	4	4	10	
1.4	Задача раскраски	2	4	2	8	
1.5	Древовидные структуры	2	_	4	6	
1.6	Обходы и элементы цикломатики	2	4	4	10	
1.7	Экстремальные задачи на графах	2	12	8	22	
1.8	Приложения теории графов	2	_	14	16	

Итого: 32 32 44 108

14. Методические указания для обучающихся по освоению дисциплины: Лекционные занятия (лекции) реализуются в традиционной форме в соответствии с календарным планом-графиком. Практические занятия направлены на углубление теоретических знаний и освоение алгоритмов с целью их использования для решения некоторых задач, имеющих модельный характер.

При использовании дистанционных образовательных технологий и электронного обучения необходимо выполнять все указания преподавателей по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Перечень основной и дополнительной литературы, интернет-ресурсов, необходимых для освоения дисциплины

а) основная литература:

	a) conce	n ochobnan surreparypa.				
	№ п/п	Источник				
1		Тюрин С. Ф. Теория графов и её приложения : учебное пособие / С. Ф. Тюрин. – Пермь : ПНИПУ, 2017. – 207 с. – ISBN 978-5-398-01745-8. – Текст : электронный // Лань : электрон-				
		но-библиотечная система. – URL: https://e.lanbook.com/book/160870				

б) дополнительная литература:

о) допо.	юлнительная литература.			
№ п/п	Источник			
2	Харари Ф. Теория графов / Ф. Харари. – М. : URSS: ЛЕНАНД, 2018. – 304 с.			
3	Емеличев В.А. Теория графов в задачах и упражнениях / В.А. Емеличев, О.И. Мельников,			
3	В.И. Сарванов, Р.И. Тышкевич. – М. : URSS: Едиториал, 2018. – 416 с.			
4	Кристофидес Н. Теория графов. Алгоритмический подход / Н. Кристофидес. – М.: Мир,			
	1978. – 427 c.			
F	Райгородский А.М. Экстремальные задачи теории графов и интернет / А.М. Райгородский.			
5	– M. : Интеллект, 2012. – 104 c.			
6	Кузнецов О.П. Дискретная математика для инженера / О.П. Кузнецов. – Спб. : Лань, 2009.			
0	– 400 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=220			

в) информационные электронно-образовательные ресурсы:

_	в) информационные опектронно образовательные ресурсы:			
	№ п/п Источник			
	7	www.lib.vsu.ru – Электронный каталог Научной библиотеки ВГУ		
		Леденева, Т.М. Курс «Прикладная теория графов» / Образовательный портал «Электронный университет ВГУ». – Режим доступа: https://edu.vsu.ru/course/view.php?id=10641		

16. Перечень учебно-методического обеспечения

	,	, realis maradir realists consists remini
№ п/п	Источник	

9	Элементы теории графов : учебное пособие для вузов / Воронеж. гос. ун-т; сост.: Л.Ю. Кабанцова, Т.К. Кацаран. – Воронеж : ЛОП ВГУ, 2007. – 55 с. : ил. – Библиогр.: с. 52 . – URL:http://www.lib.vsu.ru/elib/texts/method/vsu/may07054.pdf
10	Леденева Т.М. Некоторые алгоритмы прикладной теории графов : учебно-методическое пособие / Т.М. Леденева. – Воронеж : Издательский дом ВГУ, 2021. – 32 с.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии, электронное обучение, смешанное обучение.

При реализации дисциплины используется классическая модель лекционных и практических занятий. Организационная модель проведения занятий базируется здоровьесберегающей технологии, строгом соблюдении санитарнона гигиенических норм и правил техники безопасности в учебных помещениях. В процессе чтения лекций у обучающихся формируются следующие качества: интерес к содержанию дисциплины, критическое мышление, способность к выявлению связей между теорией и практической направленностью изучаемого материала. Практические занятия направлены на развитие навыков работы с алгоритмами и использования их для решения прикладных задач. По каждой теме обучающимся предлагается индивидуальное задание, суть которого заключается в составлении математической модели на основе теории графов и решения задачи с помощью соответствующих алгоритмов. Результаты выполнения индивидуального задания оформляются в форме отчета, включающего формулировку задачи; этапы построения математической модели; алгоритм для решения задачи; программную реализацию алгоритма (авторская или с помощью пакета); анализ результатов решения задачи.

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий. Для организации занятий рекомендован онлайнкурс «Прикладная теория графов», размещенный на платформе Электронного университета ВГУ (LMS moodle), а также интернет-ресурсы, приведенные в п.15в.

18. Материально-технического обеспечения дисциплины:

то. материально-технического обеспечения дисциплины.				
Мебель и оборудование	Программное обеспечение			
Г	Текции			
Специализированная мебель, компьютер	Windows 10 (лицензионное ПО); Adobe Reader			
(ноутбук), мультимедийное оборудова-	(свободное и/или бесплатное ПО; Mozilla			
ние (проектор, экран, средства звуковос-	Firefox (свободное и/или бесплатное ПО)			
произведения).				
Практич	еские занятия			
Специализированная мебель, компьютер	Windows 10 (лицензионное ПО); Adobe Reader			
(ноутбук), мультимедийное оборудова-	(свободное и/или бесплатное ПО; Mozilla			
ние (проектор, экран, средства звуковос-	Firefox (свободное и/или бесплатное ПО)			
произведения).				

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº	Наименование раздела дисциплины (модуля)	Компетенция	Индикатор(ы) дос- тижения компетен- ции	Оценочные средства
1.1	Основные понятия теории графов	ОПК-1	ОПК-1.1	
1.2	Достижимость и связность	ОПК-1, ОПК-3	ОПК-1.2, ОПК-3.1	
1.3	Устойчивые множества в графе	ОПК-1, ОПК-3	ОПК-1.1, ОПК-3.1	Индивидуальные
1.4	Задача раскраски	ОПК-1, ОПК-3	ОПК-1.1, ОПК-3.1	задания по темам
1.5	Древовидные структуры	ОПК-1, ОПК-3	ОПК-1.1, ОПК-1.3	(всего 8)
1.6	Обходы и элементы цикломатики	ОПК-3	ОПК-3.1	
1.7	Экстремальные задачи на графах	ОПК-1	ОПК-1.2	
1.8	Приложения теории графов	ОПК-3	ОПК-3.1	
	Промежут Форма н	Тестовые задания		

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Текущий контроль успеваемости осуществляется на основе проверки результатов выполнения индивидуальных заданий по темам. Каждое задание является практико-ориентированным и предполагает решение соответствующей задачи и интерпретацию полученных результатов. Каждому обучающемуся предлагается 8 индивидуальных заданий. Результаты выполнения индивидуального задания оформляются в виде отчета, который включает

- формулировку задачи;
- описание модели в виде графа;
- обоснование метода для решения;
- решение, полученное с помощью выбранного инструментального средства, или на основе разработанной компьютерной программы;
- выводы и рекомендации.

Примеры индивидуальных заданий

Задание 1. Строительная фирма подписала контракт на строительство нового спортзала для колледжа. В контракте предусмотрены большие штрафы за невыполнение работы в срок, поэтому для руководителя фирмы важно выяснить, какие строительно-монтажные работы имеют решающее влияние на сроки окончания строительства. В табл., составленной плановым отделом, приведен перечень работ, составляющих процесс строительства спортзала, указаны их продолжительности и предшествующие каждой из них работы.

Работа	Выполняемая работа	Продолжительность работы (в нед.)	Какие работы предшествуют?
Α	Подготовка стройплощадки	2	-
В	Укладка фундамента	3	Α
С	Монтаж вертикальных стен	5	В
D	Монтаж крыши	4	С
Е	Укладка деревянного пола	5	В
F	Отделка внутренних стен	6	С
G	Установка сантехники	2	C
Н	Монтаж электропроводки	2	D

	Установка баскетбольных щитов	1	D
J	Окраска и разметка площадки	2	E
K	Сборка системы отопления	6	G, H
	и кондиционеров		
L	Монтаж внутренних беговых дорожек	6	E
M	Строительство трибун	5	E, F
N	Установка электрического табло	2	F
0	Оборудование буфета-бара	3	E, F, G

Построить сетевую модель проекта. На ее основе составьте календарный план выполнения работ и проанализируйте его напряженность. Определить время, необходимое для реализации проекта.

Задание 2. При анализе клиентских сред профиль пользователя — это структура, выражающая предпочтения пользователя или группы пользователей на основе примеров. Если созданы профили пользователей, то в момент обращения какого-то клиента система подбирает похожие профили и, учитывая степень схожести, составляет рекомендации для клиента. Пусть создается профиль сегмента VIP-клиентов интернет-магазина SerenaGold на основе предложений от «Бриллиантов Якутии», и построен граф предпочтений, представленный на рисунке. Вершины соответствуют предложениям, причем если предложение i пользуется большим спросом, чем предложение j, то от i к j ведет дуга. Постройте последовательность предложений от «Бриллиантов Якутии», упорядоченную по убыванию предпочтительности.

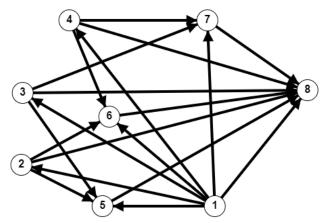
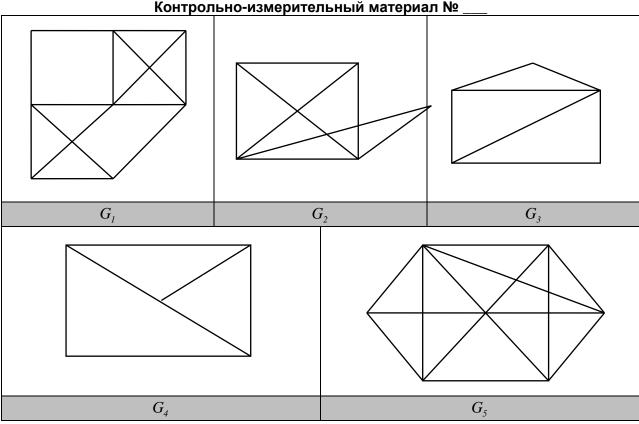


Рисунок – Граф предпочтений сегмента вип-клиентов Интернет-магазина SerenaGold


Оценивание индивидуального задания осуществляется на основе отчета, при этом если задание выполнено, то ставится «зачтено», иначе «не зачтено.

20.2 Промежуточный контроль успеваемости

Промежуточный контроль осуществляется в форме зачета на основе тестирования и результатов выполнения индивидуальных заданий. Для выполнения теста дается 90 мин.

Критерии оценивания

Результат	Требования
Зачтено	Правильно выполнено 80% заданий из контрольно-измерительного материала; все индивидуальные задания выполнены (всего 8).
Не зачтено	Выполнено менее 80% заданий и/или не все индивидуальные занятия выполнены (всего 8).

Замечания:

- 1) для задач 7,9,11,12 ребрам (дугам) графа приписать веса произвольные целые числа;
- 2) для задач 1,3,4,5,9,10,11,12 в графах ввести подходящую ориентацию ребер.

НЕОБХОДИМО ПРОДЕМОСТРИРОВАТЬ РАБОТУ АЛГОРИТМОВ

- **1**. В ориентированном графе (G_1) найти сильные компоненты, множества баз и антибаз.
- **2**. Для неориентированного графа (G_2) с помощью эвристической процедуры раскрашивания найти раскраску и хроматическое число.
- **3**. Для ориентированного графа G_3 найти максимальные независимые и минимальные доминирующие множества методом Магу.
- **4**. В бесконтурном орграфе G_1 определить функцию Гранди.
- **5**. Привести пример двудольного графа $G = (X_1 \cup X_2, U)$, где $|X_1| = 3$, $|X_2| = 4$, |U| = 7, и найти в нем максимальное паросочетание.
- **6**. В графе G_4 определить дерево поиска в глубину и дерево поиска в ширину (в качестве корня выбрать произвольную вершину).
- 7. Для взвешенного неориентированного графа G_2 найти кратчайший остов и его длину.
- **8**. В ориентированном графе G_5 найти путь с минимальным числом дуг из правой вершины в левую вершину (ориентацию ввести таким образом, чтобы такой путь существовал).
- **9**. Для взвешенного ориентированного графа (G_1, G_5) найти кратчайший путь из s в t (задать вершины s и t самостоятельно).
- ${f 10}$. Осуществить топологическую сортировку вершин бесконтурного ориентированного графа $(G_{\scriptscriptstyle \rm I})$.
- **11**. Во взвешенном ориентированном бесконтурном графе (G_5) найти критический путь из s в t, учитывая, что s источник, а t сток (задать вершины s и t самостоятельно).
- **12**. Во взвешенном ориентированном графе (G_2, G_4) найти величину максимального потока из s в t (задать вершины s и t самостоятельно).

20.3 Тестовые задания

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

Вопросы с вариантами ответов

Критерий оценивания	Шкала оценок
Верный ответ	1 балл
Неверный ответ	0 баллов

- 1. Из перечисленных свойств выберите свойства деревьев
- a) имеет (n-1) ребер;
- б) не является связным;
- в) не содержит циклов, но добавление ребра между любыми двумя несмежными вершинами приводит к появлению цикла;
- г) все циклы простые;
- д) не имеет висячих вершин;
- е) связен, но утрачивает это свойство после удаления любого ребра.

Ответ: а), в), е)

2.

TT	
На рисунке представлен бесконтурный	
граф. Разложите его на уровни. Укажите	
номер уровня, на котором находится вер-	
шина 6 (нумерация уровней начинается с	
1)	
a) 4;	2 X
б) 3; в) 2.	
в) 2.	
,	
	3

Ответ: б)

3.

TT	
На рисунке изображен ориентированный	
граф. Укажите множество вершин, обра-	
зующих ядро графа	TR AT
	T \ /
a) {1,4};	
6) {3,5};	
$0)$ $\{3,3\}$,	
B) {2};	1 _/ *
2) (2) ,	
r) {2,4,5}.	

Ответ: в)

Вопросы с кратким текстовым ответом

Критерий оценивания	Шкала оценок
Должен быть сформулирован ответ из ука-	2 балла
занных вариантов (один или несколько) или	

аналогичные, по сути, ответы с альтерна-	
тивными терминами и определениями	
Неверный ответ	0 баллов

- 2 верный ответ
- 0 неверный ответ
- 5. На рисунке изображена сеть, каждой дуге приписана пропускная способность. С помощью алгоритма Форда-Фалкерсона в данной сети ищется максимальный поток. Работа алгоритма представлена в следующей таблице.

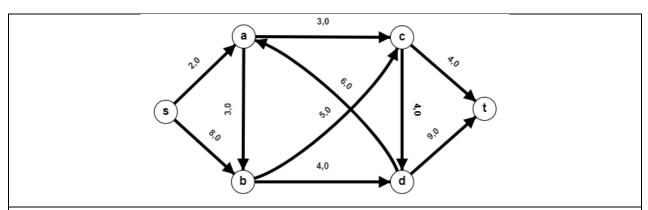


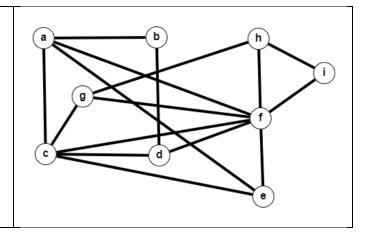
Таблица 1 – Метки вершин по итерациям

	Итерации				
	1	2	3	4	
S	$\big[0,\infty\big]$	$\big[0,\infty\big]$	$[0,\infty]$	$[0,\infty]$	
а	[+s,2]				
b		[+s,8]	[+s,6]	[+s,3]	
c	[+a,2]	[+b,5]	[+b,3]		
d			[+c,3]	[+b,3]	
t	[+c,2]	[+c,2]	[+d,3]	[+d,3]	
δ_{t}	2	2	3	3	
Путь	$s \rightarrow a \rightarrow c \rightarrow t$	$s \rightarrow b \rightarrow c \rightarrow t$	$s \rightarrow b \rightarrow c \rightarrow d \rightarrow t$	$s \rightarrow b \rightarrow d \rightarrow t$	

Чему равна величина максимального потока?

Ответ: 10

6.


0.	
Для заданного взвешенный неориентированный граф укажите вес кратчайшего (минимального) остова.	a 1 c 1 d a 5 f 2 e e

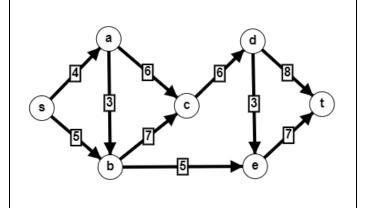
Ответ: 11

7.

Ответ: 3

Для заданного неориентированного графа найдите хроматическое число.

Ответ: 2

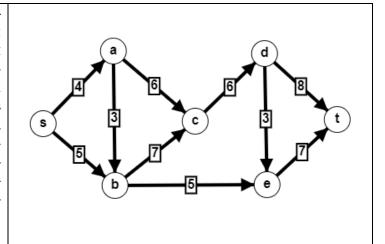

ОПК-3 Способен к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, тестов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям

Вопросы с вариантами ответов

Критерий оценивания	Шкала оценок
Верный ответ	1 балл
Неверный ответ	0 баллов

Задание 1.

Для графа, изображенного на рисунке, решается задача о нахождении величины максимального потока из *s* в *t* и соответствующего минимального разреза. Укажите номер варианта, который соответствует правильному решению задачи.

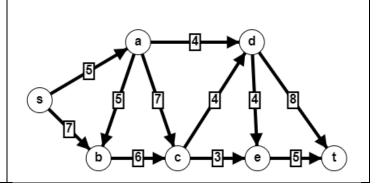


№	Величина максимального потока	Минимальный разрез
1	9	$\{(s,a),(s,b)\}$
2	9	$\{(a,c),(a,b)\}$
3	15	$\{(d,t),(e,t)\}$
4	15	$\{(a,b),(b,c),(b,e)\}$

Ответ: 1

Задание 2.

Предположим, что граф, изображенный на рисунке, является сетевой моделью проекта. Для составления календарного плана требуется определить величины максимальных (критических) путей из вершины *s* в каждую из других вершин. Длина максимального пути из *s* в *t* определит время, необходимое для реализации проекта. Укажите номер варианта, который соответствует правильному решению задачи.

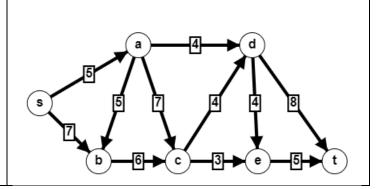


№	а	b	c	d	e	t	Максимальный путь
1	4	7	10	16	9	28	$s \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow t$
2	4	7	14	20	23	30	$s \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow t$
3	4	7	12	18	10	26	$s \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow t$
4	4	5	12	16	12	30	$s \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow t$

Ответ: 2

Задание 3.

Для графа, изображенного на рисунке, решается задача о нахождении величины максимального потока из s в t и соответствующего минимального разреза. Укажите номер варианта, который соответствует правильному решению задачи.

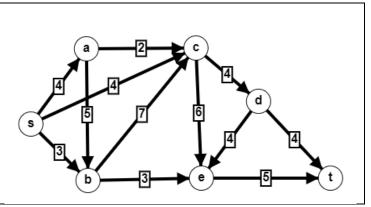


No	Величина максимального потока	Минимальный разрез
1	13	$\{(d,t),(e,t)\}$
2	11	$\{(a,b),(b,c)\}$
3	11	$\{(s,a),(b,c)\}$
4	13	$\{(a,c),(b,c)\}$

Ответ: 3

Задание 4.

Определите максимальный (критический) и минимальный (кратчайший) пути из s в t в заданном графе. Найдите разность длин путей и дуги, которые входят как в максимальный, так и в минимальный пути. Укажите номер варианта, который соответствует правильному решению задачи.

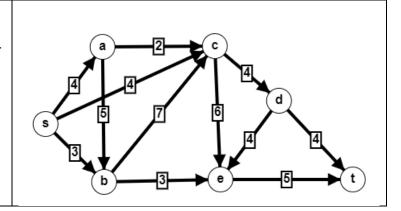


№	Разность длин путей	Общие дуги
1	12	(s,a),(c,d),(d,e)
2	12	(s,a)
3	11	(b,c),(c,e)
4	8	(a,d),(e,t)

Ответ: 2

Задание 5.

Определите кратчайший путь из s в t с помощью алгоритма Дейкстры. Какие вершины на последнем шаге имеют постоянные метки? Укажите номер варианта, который соответствует правильному решению задачи.

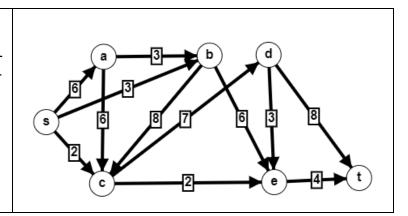


№	Длина пу-	Кратчайший путь	Вершины с постоянными
212	ТИ		метками на последнем шаге
1	12	$s \to c \to d \to t$	s,c,d,t
2	11	$s \rightarrow b \rightarrow e \rightarrow t$	s,b,e,t
3	11	$s \rightarrow b \rightarrow e \rightarrow t$	s, a, b, c, d, e, t
4	11	$s \rightarrow b \rightarrow e \rightarrow t$	s,b,c,e,t

Ответ: 3

Задание 6.

Для графа, изображенного на рисунке, решается задача о нахождении величины максимального потока из *s* в *t* и соответствующего минимального разреза. Укажите номер варианта, который соответствует правильному решению задачи.

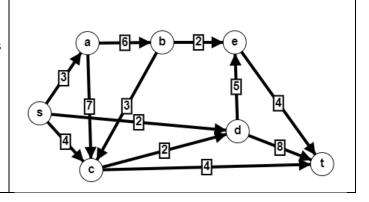


№	Величина максимального потока	Минимальный разрез
1	9	$\{(d,t),(e,t)\}$
2	16	$\{(s,c),(a,c),(b,c),(b,e)\}$
3	11	$\{(s,a),(s,c),(s,b)\}$
4	9	$\{(d,t),(d,e)\}$

Ответ: 1

Задание 7.

Для данного графа определите правильную (монотонную) нумерацию вершин (нумерация начинается с 1). Найти длину максимального (критического) пути из вершины *s* в вершины с четными номерами. Определите длину максимального пути из *s* в *t*. Укажите номер варианта, который соответствует правильному решению задачи.

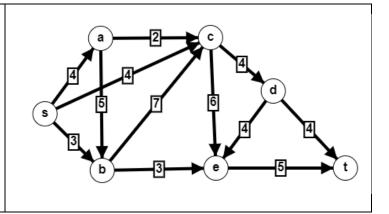


№	2	4	6	Длина макси- мального пути	Максимальный путь
1	2	11	25	32	$s \rightarrow a \rightarrow c \rightarrow b \rightarrow e \rightarrow d \rightarrow t$
2	6	13	21	26	$s \rightarrow a \rightarrow c \rightarrow d \rightarrow e \rightarrow t$
3	6	17	27	32	$s \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow t$
4	2	9	26	32	$s \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow t$

Ответ: 3

Задание 8.

Для графа, изображенного на рисунке, решается задача о нахождении величины максимального потока из s в t и соответствующего минимального разреза. Укажите номер варианта, который соответствует правильному решению задачи.



№	Величина максимального потока	Минимальный разрез
1	16	$\big\{ \big(d,t\big), \big(e,t\big), \big(c,t\big) \big\}$
2	9	$\{(s,a),(a,b)\}$
3	9	$\{(s,a),(s,c),(s,d)\}$
4	13	$\{(d,t),(d,e)\}$

Ответ: 3

Задание 9.

Пусть задан взвешенный бесконтурный ориентированный граф. Укажите номер варианта, который соответствует правильному решению задачи нахождения величины кратчайшего пути из s в t.

Варианты	Длина	Кратчайший путь
решения	пути	
1	11	$s \rightarrow c \rightarrow d \rightarrow t$
2	11	$s \rightarrow b \rightarrow e \rightarrow t$
3	12	$s \rightarrow c \rightarrow d \rightarrow t$

Ответ: 2

Тестовые задания рекомендуются к использованию при проведении диагностических работ с целью оценки остаточных знаний по результатам освоения данной дисциплины.