МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

теоретической физики

наименование кафедры, отвечающей за реализацию дисциплины

Семестр(ы)/Триместр(ы): <u>4-5</u>

(Фролов М.В.) подпись, расшифровка подписи

. .2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.25 – Электродинамика

Код и наименование дисциплины в соответствии с учебным планом

. Код и наименование направления подготовки/специальности:						
	03.03.02 – физика					
2. Профиль подгото	2. Профиль подготовки/специализация: <u>Физика медицинских, лазерных технологий и</u>					
наноматериалов						
3. Квалификация вы	пускника: <u>бакалавр</u>					
4. Форма обучения:	<u>очная (дневная)</u>					
5. Кафедра, отвечак	ощая за реализацию дисциплины: <u>0802 – теоретической физики</u>					
6. Составители про	Ограммы Фролов Михаил Владимирович					
д.фм.н.	ФИО					
ученая степень	профессор ученое звание					
7. Рекомендована:	НМС физического факультета от 20.05.2025 г. протокол № 5 (наименование рекомендующей структуры, дата, номер протокола)					

8. Учебный год: <u>2026 — 2027, 2027 — 2028</u>

- **9.Цели и задачи учебной дисциплины:** Изучить законы электромагнитных явлений, освоить математический аппарат классической электродинамики, приобрести навыки решения характерных задач электродинамики.
- 10. Место учебной дисциплины в структуре ООП: Является дисциплиной базовой части. Для освоения курса необходимо использовать материал математических дисциплин базовой части: «Математический анализ», «Аналитическая геометрия и линейная алгебра», «Теория функций комплексного переменного», «Дифференциальные уравнения», общефизических дисциплин базовой части: «Механика», «Электричество и магнетизм», «Оптика», а также дисциплины базовой части «Теоретическая механика и механика сплошных сред».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
	компетенции	,		
ОПК-1	Способность применять базовые знания в области физико-	ОПК-1.4	Умение решать типовые задачи с учетом основных понятий и общих закономерностей, сформулированных в	знать: основные понятия и законы классической электродинамика вакуума, сплошных сред и их релятивистскую формулировку.
	математических и (или) естественных наук в сфере своей профессиональ- ной		рамках базовых дисциплин естественных наук (прежде всего химии, биологии, экологии, наук о земле и человеке)	уметь: использовать в профессиональной и научной деятельности математический аппарат классической электродинамики; применять полученные знания об электромагнитных явлениях для освоения профильных дисциплин и решения профессиональных задач.
	деятельности	ОПК-1.5	Умение использовать знания основных законов естественнонаучных дисциплин в профессиональной деятельности	владеть (иметь навык(и)): методами решения характерных задач электродинамики
		ОПК-1.6	Владение навыками использования знаний о методах исследования, современных концепциях, достижениях и ограничениях естественных наук при решении практических задач, структурирования естественно- научной информации	

12. Объем дисциплины в зачетных единицах/час. (в соответствии с учебным планом) — 8 / 288.

Форма промежуточной аттестации(зачет/экзамен) зачет, экзамен

13. Трудоемкость по видам учебной работы

Вид учебной работы		Трудоемкость				
		Всего	По семестрам			
			4	5		
Аудиторные занят	РИЯ	172	72	108		
	лекции	86	32	54		
в том числе:	практические	86	32	54		
в том числе.	групповые консультации	8	8			
Самостоятельная	работа	72	36	36		
в том числе: курсовая работа (проект)						
Форма промежуточной аттестации (зачет, экзамен – 36 час.)		36	Зачет	Экзамен – 36		
Итого:		288	108	180		

13.1. Содержание дисциплины

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК*
4.4	Г	1. Лекции	
1.1	Основные уравнения электромагнитного поля в вакууме	Законы электромагнетизма как результат обобщения опытных данных. Система уравнений Максвелла для электромагнитного поля в вакууме. Энергия и импульс электромагнитного поля.	-
1.2	Постоянное электрическое поле	Основные уравнения постоянного электрического поля. Поле на больших расстояниях от системы зарядов. Дипольный и квадрупольный моменты. Система зарядов в квазиоднородном внешнем поле.	-
1.3	Постоянное магнитное поле	Уравнения постоянного магнитного поля. Закон Био-Савара-Лапласа. Магнитный момент. Магнитная энергия постоянных токов. Коэффициенты индуктивности. Токи в квазиоднородном магнитном поле. Силы в постоянном магнитном поле.	-
1.4	Излучение и рассеяние электромагнитных волн	Уравнения для электромагнитных потенциалов. Электромагнитные волны. Плоские монохроматические волны. Поляризация волны. Запаздывающие потенциалы. Потенциалы Лиенара- Вихерта. Общая теория излучения. Дипольное излучение. Магнитно-дипольное и квадрупольное излучения. Торможение излучением. Спектральное разложение излучения. Рассеяние электромагнитных волн.	-
1.5	Система уравнений Максвелла в средах	Уравнения электромагнитного поля в поляризующихся и намагничивающихся средах.	-
1.6	Постоянные электрическое и магнитное поля в средах. Постоянный ток в средах	Электростатика проводников. Электростатика диэлектриков. Постоянный ток в проводящих средах. Постоянное магнитное поле в средах.	-
1.7	Квазистационарные токи и поля	Квазистационарное приближение. Система линейных проводников. Скин-эффект.	-
1.8	Электромагнитные волны в средах	Электромагнитные волны в диэлектриках в отсутствие дисперсии. Дисперсия диэлектрической проницаемости. Отражение и преломление. Распространение волн в неоднородной среде.	-

		Двулучеприломление.	
1.9	Классическая теория сверхпроводимости	Сверхпроводимость. Теория Лондонов.	-
1.10	Элементы нелинейной оптики	Нелинейная восприимчивость. Смешивание частот. Генерация гармоник. Эффект выпрямления. Эффект Коттона-Мутона. Эффект Фарадея. Эффект Кера. Самофокусировка.	-
1.11	Специальная теория относительности	Электродинамика в релятивистской формулировке. Принципы специальной теории относительности. Преобразования Лоренца. Импульс и энергия свободной частицы. Формула Эйнштейна. Четырехмерный формализм. Примеры 4-векторов. 4-вектор тока и 4-потенциал электромагнитного поля. Тензор электромагнитного поля. Преобразования Лоренца для поля. Эффект Доплера. Уравнения Максвелла в ковариантной форме. Тензор энергии-импулься электромагнитного поля. Уравнение движения заряда в ковариантной форме. 2. Практические занятия	-
2.1	Основные уравнения электромагнитного поля в вакууме	Законы электромагнетизма. Система уравнений Максвелла для электромагнитного поля в вакууме. Энергия и импульс электромагнитного поля.	-
2.2	Постоянное электрическое поле	Теорема Остроградского-Гаусса. Уравнение Пуассона. Принцип суперпозиции. Поле на больших расстояниях от системы зарядов. Дипольный и квадрупольный моменты.	-
2.3	Постоянное магнитное поле	Закон Био–Савара–Лапласа. Магнитный момент. Магнитная энергия постоянных токов. Коэффициенты индуктивности. Токи в квазиоднородном магнитном поле. Силы в постоянном магнитном поле.	-
2.4	Излучение и рассеяние электромагнитных волн	Плоские монохроматические волны. Поляризация волны. Запаздывающие потенциалы. Дипольное излучение. Магнитно-дипольное и квадрупольное излучения. Торможение излучением. Спектральное разложение излучения. Рассеяние электромагнитных волн.	-
2.5	Система уравнений Максвелла в средах	Уравнения электромагнитного поля в поляризующихся и намагничивающихся средах.	-
2.6	Постоянные электрическое и магнитное поля в средах. Постоянный ток в средах	Электростатика проводников. Электростатика диэлектриков. Постоянный ток в проводящих средах. Постоянное магнитное поле в средах.	-
2.7	Квазистационарные токи и поля	Система линейных проводников. Скин-эффект.	-
2.8	Электромагнитные волны в средах	Электромагнитные волны в диэлектриках в отсутствие дисперсии.	-
2.9	Классическая теория сверхпроводимости.	Теория Лондонов.	-
2.10	Элементы нелинейной оптики	Нелинейная восприимчивость. Смешивание частот. Генерация гармоник. Эффект выпрямления. Эффект Коттона-Мутона. Эффект Фарадея. Эффект Кера. Самофокусировка.	-
2.11	Специальная теория относительности	Преобразования Лоренца. Импульс и энергия свободной частицы. Формула Эйнштейна. 4-вектор тока и 4-потенциал электромагнитного поля. Тензор электромагнитного поля. Преобразования Лоренца для поля. Эффект Доплера. Тензор энергии-импулься электромагнитного поля. 3. Групповые консультации	-
3.1	Основные уравнения	Система уравнений Максвелла для	-
	электромагнитного поля в	электромагнитного поля в вакууме. Энергия и	

	вакууме	импульс электромагнитного поля.	
3.2	Постоянное электрическое поле	Основные уравнения постоянного электрического поля. Поле на больших расстояниях от системы зарядов. Дипольный и квадрупольный моменты. Система зарядов в квазиоднородном внешнем поле.	-
3.3	Постоянное магнитное поле	Уравнения постоянного магнитного поля. Закон Био-Савара-Лапласа. Магнитный момент. Магнитная энергия постоянных токов. Коэффициенты индуктивности. Токи в квазиоднородном магнитном поле. Силы в постоянном магнитном поле.	-
3.4	Излучение и рассеяние электромагнитных волн	Уравнения для электромагнитных потенциалов. Электромагнитные волны. Плоские монохроматические волны. Поляризация волны. Запаздывающие потенциалы. Дипольное излучение. Магнитно-дипольное и квадрупольное излучения. Торможение излучением. Спектральное разложение излучения. Рассеяние электромагнитных волн.	-

^{*} заполняется, если отдельные разделы дисциплины изучаются с помощью онлайн-курса. В колонке Примечание необходимо указать название онлайн-курса или ЭУМК. В других случаях в ячейки ставятся прочерки.

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наимонование томи		[Виды занятий (ча	сов)	
п/п	Наименование темы (раздела) дисциплины	Лекции	Практические	Групповые консультации	Самостоятельная работа	Всего
			4 семестр		J P.55.4	
1	Основные уравнения электромагнитного поля в вакууме	6	2	2	8	16
2	Постоянное электрическое поле	6	6	2	8	20
3	Постоянное магнитное поле	6	6	2	8	20
4	Излучение и рассеяние электромагнитных волн	14	18	2	12	52
			5 семестр			
5	Система уравнений Максвелла в средах	6	6		4	13
6	Постоянные электрическое и магнитное поля в средах. Постоянный ток в средах	8	8		4	36
7	Квазистационарные токи и поля	6	6		4	16
8	Электромагнитные волны в средах	6	6		4	13
9	Классическая теория сверхпроводимости	6	6		6	
10	Элементы нелинейной оптики	12	12		6	
11	Специальная теория относительности	10	10		8	30
	Итого:	86	86	8	72	252

14. Методические указания для обучающихся по освоению дисциплины:

(рекомендации обучающимся по освоению дисциплины: указание наиболее сложных разделов, работа с конспектами лекций, презентационным материалом, рекомендации по выполнению курсовой работы, по организации самостоятельной работы по дисциплине и др.)

Необходимо после каждой лекции по ее теме разбирать и осваивать лекционный материал, для его лучшего понимания читать рекомендованную основную и дополнительную литературу, готовиться к практическому занятию, разбирая соответствующий теоретический материал, систематически выполнять домашние задания, не пропускать текущие тестирования по пройденному теоретическому и практическому материалу.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
1	Мармо С.И. Лекции по электродинамике. Часть 1 / С.И. Мармо, А.В. Флегель, М.В. Фролов. — Воронеж: Издательский дом ВГУ, 2018.— 102 с .// «Университетская библиотека online»: электронно-библиотечная система. — URL: http://www.lib.vsu.ru/elib/texts/method/vsu/m18-03.pdf
2	Мармо С.И. Лекции по электродинамике. Часть 2 / С.И. Мармо, А.В. Флегель, М.В. Фролов. — Воронеж: Издательский дом ВГУ, 2018.— 114 с .// «Университетская библиотека online» : электронно-библиотечная система. — URL : http://www.lib.vsu.ru/elib/texts/method/vsu/m18-04.pdf
3	Алексеев А.И. Сборник задач по классической электродинамике / А.И. Алексеев. – СПб.: Лань, 2008. – 320 с. // «Университетская библиотека online»: электронно-библиотечная система. – URL: http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=100

б) дополнительная литература:

№ п/п	Источник
4	Алтунин К.К. Электродинамика, специальная теория относительности и электродинамика сплошных сред / К.К. Алтунин. — М.: Директ-Медиа, 2014. — 109 с. // «Университетская библиотека online» : электронно-библиотечная система. — URL : «https://biblioclub.lib.vsu.ru/index.php?page=book&id=240549&sr=1»
5	Бредов М.М. Классическая электродинамика / М.М. Бредов, В.В. Румянцев, И.Н. Топтыгин. — СПб.: Лань, 2003. — 398 с. // «Университетская библиотека online» : электронно-библиотечная система. — URL : «http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=606».
6	Ландау Л.Д. Теория поля / Л.Д. Ландау, Е.М. Лифшиц.— М.: Физматлит, 2003. — 530 с.
7	Ландау Л.Д. Электродинамика сплошных сред / Л.Д. Ландау, Е.М. Лифшиц. – М.: Физматлит, 2003. – 651 с.
8	Батыгин В.В. Сборник задач по электродинамике и специальной теории относительности [Электронный ресурс] : учеб. пособие / В. В. Батыгин, И. Н. Топтыгин .— Москва : Лань, 2010 .— 480 с. // «Университетская библиотека online» : электронно-библиотечная система. — URL : «http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=544»
9	Терлецкий Я.П. Электродинамика / Я.П. Терлецкий, Ю.П. Рыбаков. – М.: Высш. шк., 1990. – 352 с.
10	Запрягаев С.А. Электродинамика / С.А. Запрягаев. – Воронеж: Изд-во Воронеж. гос. ун-та, 2005. – 536 с.
11	Тамм И.Е. Основы теории электричества / И.Е. Тамм. – М.: Наука, 1976. – 620 с.
12	Мармо С.И. Задачи по электродинамике. Часть 1 / С.И. Мармо, М.В. Фролов. — Воронеж: Издательско-полиграфический центр ВГУ, 2014. — 63 с .// «Университетская библиотека online» : электронно-библиотечная система. — URL : «http://www.lib.vsu.ru/elib/texts/method/vsu/m14-87.pdf».

13

Мармо С.И. Задачи по электродинамике. Часть 1 / С.И. Мармо, М.В. Фролов. – Воронеж: Издательский дом ВГУ, 2015. – 53с. // «Университетская библиотека online» : электронно-библиотечная система. – URL :«http://www.lib.vsu.ru/elib/texts/method/vsu/m15-113.pdf»

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Ресурс
14	http://www.lib.vsu.ru/
15	https://biblioclub.lib.vsu.ru/
16	https://lanbook.lib.vsu.ru/

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы, онлайн-курсы, ЭУМК

- **16.** Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных), курсовых работ и др.)
- 17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

18. Материально-техническое обеспечение дисциплины:

Лекционная аудитория, доска, учебная литература, дисплейный класс.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1	Разделы 1.1-1.2, 2.1- 2.2, 3.1-3.2		OFIK 4.4	контрольная работа 1
2	Разделы 1.3, 2.3, 3.3		ОПК – 1.4 ОПК – 1 ОПК – 1.6 ОПК – 1.6	контрольная работа 2
3	Разделы 1.4, 2.4, 3.4	Olik - I		контрольная работа 3
5	Разделы 1.5-1.11, 2.5- 2.11		OTIK - 1.0	контрольная работа 4
	Промежуточна форма контр		Список вопросов к зачету	
	Промежуточна форма контро		Список вопросов к экзамену	

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Контрольная работа 1,2,3,4

Пример варианта контрольной работы 1

- 1. Пространство заполнено зарядом, плотность которого меняется по закону ρ=ρ(r) (конкретный вид ρ(r) будет задан). Найти напряженность поля **E** как функцию **r**.
- 2. Электрический заряд q равномерно распределен по тонкому кольцу радиусом а. В центре кольца помещен заряд -q. Найти а) потенциал и напряженность поля, создаваемого системой на оси кольца; б) потенциал на оси кольца на большом расстоянии от системы (каким мультипольным моментом определяется его величина?).
- 3. Окружность радиусом R заряжена с линейной плотностью $\lambda = \lambda_0 \sin \alpha$ (угол α отсчитывается от одного из радиусов окружности). Найти дипольный момент системы.
- 4. На оси Оz в точках с координатами -а и +а расположены заряды +е, а в начале координат заряд -2e. Найти тензор квадрупольного момента системы. Записать потенциал поля на большом расстоянии от зарядов как функцию угла θ.

Пример варианта контрольной работы 2

- 1. Внутри бесконечного цилиндра радиусом R параллельно оси течет ток с объемной плотностью $\mathbf{j} = \mathbf{j}(\mathbf{r})$ (\mathbf{r} расстояние до оси цилиндра). Найти индукцию магнитного поля внутри и снаружи цилиндра.
- 2. Прямой провод имеет виток радиусом R. По проводу течет ток J. Определить индукцию магнитного поля в центре витка и на его оси на расстоянии h от центра.
- 3. Равномерно заряженный плоский диск вращается вокруг своей оси с угловой скоростью **ω**. Радиус диска а, полный заряд Q. Найти индукцию магнитного поля, создаваемого диском на расстояниях r >> a.
- 4. Заряд Q равномерно распределен по объему шара радиуса R. Одна половина шара вращается вокруг своей оси симметрии с постоянной угловой скоростью ω_1 а другая вращается с постоянной угловой скоростью ω_2 в противоположном направлении. Найти магнитную индукцию B в центре шара.

Пример варианта контрольной работы 3

- 1. Частица с массой m и зарядом е движется в однородном магнитном поле **В** по окружности радиусом R. Найти энергию, теряемую на дипольное излучение за один оборот.
- 2. Прямоугольная рамка с постоянным линейным током J вращается вокруг своей диагонали с постоянной угловой скоростью ω. Площадь рамки равна S, а ее линейные размеры малы по сравнению с длиной излучаемой волны. Найти интенсивность dl излучения в телесный угол dΩ в среднем по времени за период вращения рамки.
- Электрон влетает в плоский конденсатор и через некоторое время покидает его в той же точке. Напряженность Е поля в конденсаторе однородна и постоянна, скорость электрона при влете равна v. Найти спектральное распределение полной энергии dε_ω дипольного излучения электрона.
- 4. Записать общую формулу для интенсивности излучения, возникающего при столкновении двух медленных (v<< c) электронов.

Пример варианта контрольной работы 4

- 1. Два сверхзвуковых самолета летят навстречу друг другу. Их скорости относительно земли равны соответственно 1500 км/ч и 3000 км/ч. Какова скорость первого самолета, измеренная пассажирами второго самолета?
- 2. Частицы с массами m_A , m_B , m_C участвуют в реакции $A \rightarrow B + C$. Доказать, что если A покоится в лабораторной системе, то частица B обладает энергией $\mathcal{E}_B = c^2 (m_A^2 + m_B^2 m_C^2)/2m_A$.
- 3. Доказать, что матрица преобразований Лоренца удовлетворяет условию ортогональности, α_i $\alpha_i = \delta_k^i$, где δ_k^i четырехмерный символ Кронекера.
- Бесконечная плоскость равномерно заряжена с поверхностной плотностью σ в собственной системе отсчета. Найти электрическое и магнитное поля в системе отсчета, относительно которой плоскость движется со скоростью V. Направление скорости а) перпендикулярно плоскости; б) параллельно плоскости.

Описание технологии проведения

На решение заданий контрольный работы выделяется 2 академических часа. При решении задач студент может пользоваться заранее подготовленными методическими материалами.

Требования к выполнению заданий (или шкалы и критерии оценивания)

Оценка «отлично»: Подробные и безошибочные решения всех задач, допускаются незначительные вычислительные неточности.

Оценка «хорошо»: Подробные решения всех задач, выбор правильного хода решения для всех задач, допускаются вычислительные неточности, а также неполное выполнение отдельных заданий.

Оценка «удовлетворительно»: решение отдельных задач, допускаются незначительные неточности в выборе метода и хода решения задачи.

Оценка «неудовлетворительно» отсутствие правильно решенных задач, использование ошибочных методов и приемов для решения поставленных задач.

20.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Список вопросов для проведения зачета

- 1. Уравнения Максвелла в дифференциальной форме (как перейти от неё к интегральной форме?).
- 2. Уравнения Максвелла в интегральной форме (как перейти от неё к дифференциальной форме?).
- 3. Плотность энергии и плотность потока энергии.
- 4. Уравнения Максвелла для постоянного электрического поля, связь напряженности **E** и электростатического потенциала φ.
- 5. Уравнение Пуассона на потенциал ф и его решение (с рисунком!).
- 6. Потенциал и напряженность поля точечного заряда и системы точечных зарядов (с рисунком!).
- 7. Энергия взаимодействия двух (нескольких) точечных зарядов.
- 8. Потенциал и напряженность поля на больших расстояниях от системы неподвижных зарядов (без квадрупольного члена). Определение дипольного момента.
- 9. Энергия диполя в квазилднородном внешнем поле, действующие на него сила и момент сил.
- 10. Уравнения Максвелла для постоянного магнитного поля. Векторный потенциал, неоднозначность определения векторного потенциала.
- 11. Уравнение Пуассона для векторного потенциала и его решение (с рисунком!).
- 12. Закон Био-Савара-Лапласа для объёмных и квазилинейных токов (с рисунком!).
- 13. Определение магнитного момента. Векторный потенциал и магнитная индукция на больших расстояниях.
- 14. Магнитный момент плоского контура с током. Магнитный момент точечных частиц.
- 15. Собственная энергия и энергия взаимодействия постоянных токов через коэффициенты самоиндукции и взаимоиндукции.
- 16. Потенциальная функция тока в квазиоднородном магнитном поле. Сила и момент сил, действующие на проводник с током.
- 17. Уравнения для электромагнитных потенциалов (неоднородные волновые уравнения), связь векторов поля и потенциалов поля, условие Лоренца.
- 18. Волновое уравнение (однородное). Напряженность электрического поля в плоской монохроматической волне.
- 19. Дифференциальная и полная интенсивности излучения в длинноволновом приближении.
- 20. Сечение рассеяния электромагнитной волны свободным электроном (формула Томсона)

Описание технологии проведения

Зачет проходит в письменной форме. Студенту предлагается 15 вопросов из полного списка вопросов, на которые он должен дать краткий ответ в течение одного академического часа.

Требования к выполнению заданий, шкалы и критерии оценивания

«Зачтено»: даны правильные и полные ответы на 10 и более вопросов, допускаются погрешности, которые студент способен скорректировать под руководством преподавателя

«Не зачтено»: правильные и полные ответы даны на менее, чем 10 вопросов; ответы на вопросы содержат неточности и ошибки, которые студент не способен скорректировать под руководством преподавателя

Список вопросов для проведения экзамена

- 1. Законы электромагнетизма как следствие экспериментальных данных
- 2. Система уравнений Максвелла для электромагнитного поля в вакууме
- 3. Энергия электромагнитного поля
- 4. Импульс электромагнитного поля
- 5. Основные уравнения постоянного электрического поля
- 6. Энергия электростатического поля
- 7. Поле на больших расстояниях от системы зарядов. Дипольный и квадрупольный моменты
- 8. Система зарядов в квазиоднородном внешнем поле
- 9. Постоянное магнитное поле
- 10. Магнитный момент
- 11. Магнитная энергия постоянных токов. Коэффициенты самоиндукции и взаимной индукции
- 12. Токи в квазиоднородном магнитном поле
- 13. Уравнения для электромагнитных потенциалов
- 14. Электромагнитные волны
- 15. Плоские монохроматические волны
- 16. Запаздывающие потенциалы
- 17. Дипольное излучение
- 18. Квадрупольное и магнитно-дипольное излучения
- 19. Спектральное разложение излучения
- 20. Торможение излучением
- 21. Рассеяние электромагнитных волн
- 22. Принципы СТО. Преобразования Лоренца
- 23. Следствия из преобразований Лоренца
- 24. Функция Лагранжа свободной релятивистской частицы
- 25. Импульс и энергия свободной частицы
- 26. Четырехмерные векторы и тензоры. Тензорный характер дифференциальных операций
- 27. Примеры 4-векторов. Преобразование Лоренца для импульса, энергии, силы.
- 28. Тензор электромагнитного поля
- 29. Преобразования Лоренца для поля, инварианты электромагнитного поля
- 30. Эффект Доплера
- 31. Уравнения Максвелла в ковариантной форме
- 32. Функция Лагранжа и функция Гамильтона заряда в электромагнитном поле
- 33. Уравнение движения заряда в электромагнитном поле
- 34. Система уравнений Максвелла в средах
- 35. Электростатика проводников
- 36. Электростатика диэлектриков
- 37. Постоянный ток в проводящих средах
- 38. Квазистационарное электромагнитное поле. Система линейных проводников
- 39. Скин-эффект.
- 40. Постоянное магнитное поле в средах
- 41. Электромагнитные волны в диэлектриках в отсутствие дисперсии
- 42. Дисперсия диэлектрической проницаемости. Дисперсионные соотношения
- 43. Классическая модель диспергирующей среды
- 44. Электромагнитные волны в диспергирующих средах.
- 45. Нелинейная оптика. Нелинейные восприимчивости.
- 46. Генерация гармоник. Смешение частот.
- 47. Эффект Фарадея.
- 48. Эффект Коттона-Мутона.
- 49. Эффект выпрямления.
- 50. Сверхпроводимость. Классическая теория Лондонов.
- 51. Сверхпроводящая пластина.
- 52. Сверхпроводящий цилиндр.

Описание технологии проведения

Экзамен проходит в устной форме. Студенту предлагается 2 вопросов из полного списка вопросов, на которые он должен дать развернутый ответ в течение одного академического часа. В случае, если студент имеет оценку «неудовлетворительно» по одной из контрольных работ текущей аттестации, ему также предлагается одна из задачи из соответствующей контрольной работы.

Требования к выполнению заданий, шкалы и критерии оценивания

- «Отлично»: Подробные и безошибочные ответы на основные и дополнительные вопросы, полное понимание и свободное владение материалом, умение решать практические задачи
- «Хорошо»: Подробные ответы на поставленные вопросы с мелкими ошибками, незначительные пробелы в знании материала, умение решать практические задачи
- «Удовлетворительно»: Неудовлетворительные ответы на один из основных вопросов КИМа и некоторые дополнительные вопросы, неполное знание или понимание материала, низкие навыки решения практических задач
- «Неудовлетворительно»: плохое знание материала, неудовлетворительные ответы на вопросы КИМа и большинство дополнительных вопросов, отсутствие навыков решения практических задач.