МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

Ю

УТВЕРЖДАЮ
Заведующий кафедрой теоретической физики наименование кафедры, отвечающей за реализацию дисциплины (Фролов М.В.) подпись, расшифровка подписи
2025 г.
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ
12.03.03 – фотоника и оптоинформатика
2. Профиль подготовки/специализация: <u>"Фотоника и оптоинформатика"</u>
3. Квалификация выпускника: <u>бакалавр</u>
4. Форма обучения: очная (дневная)
5. Кафедра, отвечающая за реализацию дисциплины: <u>0802 - теоретической физики</u>

7. Рекомендована: НМС физического факультета от 20.05.2025 г., протокол № 5 (наименование рекомендующей структуры, дата, номер протокола)

8. Учебный год: *2026-2027* Семестр(-ы): 3

6. Составители программы: Мармо Сергей Иванович

ФИО

доцент

ученое звание

д.ф.-м.н.

ученая степень

9. Цели и задачи учебной дисциплины:

Цель дисциплины — ознакомить студентов с современными представлениями о законах электромагнитных явлений. Задачей — дать возможность студентам освоить математический аппарат классической электродинамики, приобрести навыки решения типичных задач электродинамики.

10. Место учебной дисциплины в структуре ООП: Входит в базовую часть Б1. Студент должен обладать знаниями по дисциплинам модулей «Общая физика» и «Математика».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты
				обучения
ОПК-1	Способность применять	ОПК-1.1	Умение	знать: основные понятия и
	естественнонаучные и		применять	законы классической
	общеинженерные знания,		знания	электродинамика вакуума,
	методы математического		естественных	сплошных сред и их
	анализа и моделирования		наук в	релятивистскую
	в инженерной		инженерной	формулировку.
	деятельности, связанной		практике	
	с фотонными			уметь: использовать в
	технологиями обработки			профессиональной и
	информации,			научной деятельности
	проектированием,			математический аппарат
	конструированием и			классической
	технологиями			электродинамики; применять
	производства элементов,			полученные знания об
	приборов и систем			электромагнитных явлениях
	фотоники и			для освоения профильных
	оптоинформатики			дисциплин и решения
				профессиональных задач.
				владеть (иметь навык(и)):
				методами решения
				характерных задач
				электродинамики

12. Объем дисциплины в зачетных единицах/часах (в соответствии с учебным планом) — 4 / 144.

Форма промежуточной аттестации (зачет/экзамен) – экзамен.

13. Трудоемкость по видам учебной работы:

Вид учебной работы		Трудоемкость			
		Всего	По семестрам		
			3 семестр		
Аудиторные занятия		68	68		
	Лекции	34	34		
в том числе:	практические	34	34		
	лабораторные				
Самостоятельная работа		40	40		
в том числе: курсовая работа (проект)					
Форма промежуточной аттестации (экзамен –час.)		Экзамен - 36, Курс.работа	Экзамен - 36, Курс.работа		
тМ	ого:	144	144		

13.1. Содержание дисциплины

Nº п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК*
	•	1. Лекции	
1.1	Основные уравнения электромагнитного поля в вакууме	Законы электромагнетизма как результат обобщения опытных данных. Система уравнений Максвелла для электромагнитного поля в вакууме. Энергия и импульс электромагнитного поля.	-
1.2	Постоянное электрическое поле	Основные уравнения постоянного электрического поля. Поле на больших расстояниях от системы зарядов. Дипольный и квадрупольный моменты. Система зарядов в квазиоднородном внешнем поле.	-
1.3	Постоянное магнитное поле	Уравнения постоянного магнитного поля. Закон Био—Савара—Лапласа. Магнитный момент. Магнитная энергия постоянных токов. Коэффициенты индуктивности. Токи в квазиоднородном магнитном поле. Силы в постоянном магнитном поле.	-
1.4	Излучение и рассеяние электромагнитных волн	Уравнения для электромагнитных потенциалов. Электромагнитные волны. Плоские монохроматические волны. Поляризация волны. Запаздывающие потенциалы. Общая теория излучения. Дипольное излучение. Магнитнодипольное и квадрупольное излучения. Торможение излучением. Спектральное разложение излучения. Рассеяние электромагнитных волн.	-
1.5	Система уравнений Максвелла в средах	Уравнения электромагнитного поля в поляризующихся и намагничивающихся средах.	-
1.6	Постоянные электрическое и магнитное поля в средах. Постоянный ток в средах	Электростатика проводников. Электростатика диэлектриков. Постоянный ток в проводящих средах. Постоянное магнитное поле в средах.	-
1.7	Квазистационарные токи и поля	Квазистационарное приближение. Система линейных проводников. Скин-эффект.	-

1.8	Электромагнитные волны в средах	Электромагнитные волны в диэлектриках в отсутствие дисперсии. Дисперсия диэлектрической проницаемости. Отражение и преломление.	-				
	2. Практические занятия						
2.1	Основные уравнения электромагнитного поля в вакууме	Законы электромагнетизма как результат обобщения опытных данных. Система уравнений Максвелла для электромагнитного поля в вакууме. Энергия и импульс электромагнитного поля.	-				
2.2	Постоянное электрическое поле	Основные уравнения постоянного электрического поля. Поле на больших расстояниях от системы зарядов. Дипольный и квадрупольный моменты. Система зарядов в квазиоднородном внешнем поле.	-				
2.3	Постоянное магнитное поле	Уравнения постоянного магнитного поля. Закон Био-Савара-Лапласа. Магнитный момент. Магнитная энергия постоянных токов. Коэффициенты индуктивности. Токи в квазиоднородном магнитном поле. Силы в постоянном магнитном поле.	-				
2.4	Излучение и рассеяние электромагнитных волн	Уравнения для электромагнитных потенциалов. Электромагнитные волны. Плоские монохроматические волны. Поляризация волны. Запаздывающие потенциалы. Общая теория излучения. Дипольное излучение. Магнитнодипольное и квадрупольное излучения. Торможение излучением. Спектральное разложение излучения. Рассеяние электромагнитных волн.	-				
2.5	Система уравнений Максвелла в средах	Уравнения электромагнитного поля в поляризующихся и намагничивающихся средах.	-				
2.6	Постоянные электрическое и магнитное поля в средах. Постоянный ток в средах	Электростатика проводников. Электростатика диэлектриков. Постоянный ток в проводящих средах. Постоянное магнитное поле в средах.	-				
2.7	Квазистационарные токи и поля	Квазистационарное приближение. Система линейных проводников. Скин-эффект.	-				
2.8	Электромагнитные волны в средах	Электромагнитные волны в диэлектриках в отсутствие дисперсии. Дисперсия диэлектрической проницаемости. Отражение и преломление.	-				

^{*} заполняется, если отдельные разделы дисциплины изучаются с помощью онлайн-курса. В колонке Примечание необходимо указать название онлайн-курса или ЭУМК. В других случаях в ячейки ставятся прочерки.

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Цаимонование разпола	Виды занятий (часов)				
п/п	Наименование раздела дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
	Основные уравнения					
1	электромагнитного поля					
	в вакууме	4	4		4	12
2	Постоянное					
	электрическое поле	4	4		6	14
3	Постоянное магнитное					
3	поле	4	4		6	14
4	Излучение и рассеяние					
_	электромагнитных волн	6	6		6	18

5	Система уравнений				
3	Максвелла в средах	4	4	4	12
	Постоянные				
6	электрическое и				
0	магнитное поля в средах.				
	Постоянный ток в средах	4	4	6	14
7	Квазистационарные токи				
	и поля	4	4	4	12
8	Электромагнитные волны				
	в средах	4	4	4	12
	Итого:	34	34	40	108

14. Методические указания для обучающихся по освоению дисциплины (рекомендации обучающимся по освоению дисциплины: работа с конспектами лекций, презентационным материалом, выполнение практических заданий, тестов, заданий текущей аттестации и т.д.)

Необходимо готовиться к лабораторному занятию, разбирая соответствующий теоретический материал, систематически выполнять домашние задания, не пропускать текущие тестирования по пройденному теоретическому и практическому материалу.

15. Перечень основной и дополнительной литературы, ресурсов интернета, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
	Бредов, М. М. Классическая электродинамика : учебное пособие / М. М. Бредов, В.
1	В. Румянцев, И. Н. Топтыгин. — 2-е изд., испр. — Санкт-Петербург : Лань, 2022. —
'	400 с. — ISBN 5-8114-0511-1. — Текст : электронный // Лань : электронно-
	библиотечная система. — URL: https://e.lanbook.com/book/
2	Батыгин, В.В. Сборник задач по электродинамике и специальной теории относительности: учебное пособие / В.В.Батыгин, И.Н.Топтыгин.— 4-е изд.— Санкт-Петербург: Лань, 2022.— 480 с.— ISBN 978-5-8114-0921-1.— Текст: электронный // Лань: электронно-библиотечная система.— URL: https://e.lanbook.com/book/210440/

б) дополнительная литература:

№ п/п	№ п/п	I VICTORIUN

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет) *:

	·
№ п/п	Ресурс
3	http://www.lib.vsu.ru/
4	https://biblioclub.lib.vsu.ru/
5	https://lanbook.lib.vsu.ru/

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1	Крыловецкая Т.А. Задачи по электродинамике. Ч.1. Стационарные электромагнитные поля. Пособие к практическим занятиям./ сост. Т.А. Крыловецкая, В.Д. Овсянников Воронеж: ИПЦ ВГУ,, 2015 42 с.
2	Крыловецкая Т.А. Задачи по электродинамике. Ч.2. Переменные электромагнитные поля / сост. Т.А. Крыловецкая, В.Д. Овсянников , А.В. Флегель . Воронеж, Воронеж. гос. ун-т, 2015. — 55 с.
3	Крыловецкая Т.А. Практический курс электродинамики/ Т.А. Крыловецкая, В.Д. Овсянников. Воронеж, Издательский дом ВГУ, 2019. – 102 с.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

Курс на сайте Электронный университет ВГУ https://edu.vsu.ru/course/view.php?id=4592

18. Материально-техническое обеспечение дисциплины:

Лекционная аудитория, доска, учебная литература, электронные средства презентации.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Разделы 1.1 – 1.8, 2.1 – 2.8	ОПК - 1	ОПК – 1.1	контрольная работа 1, контрольная работа 2, контрольная работа 3
	межуточная аттестация ма контроля – экзамен	Список вопросов к экзамену		

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Контрольная работа 1,2,3

(наименование оценочного средства текущего контроля успеваемости)

Пример варианта контрольной работы 1

- 1. Показать, что div rot $\mathbf{A}(\mathbf{r}) = 0$; rot grad $f(\mathbf{r}) = 0$.
- 2. Доказать, что $\operatorname{div} \mathbf{r} = 3$; $\operatorname{rot} \mathbf{r} = 0$; $\operatorname{div}(\mathbf{\varphi}(\mathbf{r})\mathbf{r}) = 3\mathbf{\varphi}(\mathbf{r}) + r d\mathbf{\varphi}/d\mathbf{r}$.

3. Найти распределение напряженности электрического поля равномерно заряженного по объему цилиндра.

Пример варианта контрольной работы 2

- 1. Найти распределение напряженности электрического поля точечного заряда, находящегося на расстоянии d от центра заземленной проводящей сферы радиуса R<d.
- 2. Найти поверхностную плотность заряда и электродипольный момент проводящей сферы в однородном электрическом поле.
- 3. Рассчитать электроемкость плоского конденсатора.

Пример варианта контрольной работы 3

- 1. Определить магнитное поле бесконечного цилиндрического проводника с током.
- 2. Определить магнитное поле на оси, перпендикулярной плоскости кольца с током.
- 3. Рассчитать магнитный момент равномерно заряженного шара, вращающегося вокруг своей оси.

Описание технологии проведения

На решение заданий контрольный работы выделяется 2 академических часа. При решении задач студент может пользоваться заранее подготовленными методическими материалами.

Требования к выполнению заданий (или шкалы и критерии оценивания)

Оценка «отлично»: Подробные и безошибочные решения всех задач, допускаются незначительные вычислительные неточности.

Оценка «хорошо»: Подробные решения всех задач, выбор правильного хода решения для всех задач, допускаются вычислительные неточности, а также неполное выполнение отдельных заданий.

Оценка «удовлетворительно»: решение отдельных задач, допускаются незначительные неточности в выборе метода и хода решения задачи.

Оценка «неудовлетворительно» отсутствие правильно решенных задач, использование ошибочных методов и приемов для решения поставленных задач.

20.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Список вопросов для проведения экзамена

(наименование оценочного средства промежуточной аттестации)

- 1. Законы электромагнетизма как следствие экспериментальных данных.
- 2. Система уравнений Максвелла для электромагнитного поля в вакууме.
- 3. Энергия электромагнитного поля.
- 4. Импульс электромагнитного поля.
- 5. Основные уравнения постоянного электрического поля.
- 6. Энергия электростатического поля.
- 7. Поле на больших расстояниях от системы зарядов. Дипольный и квадрупольный моменты.
- 8. Система зарядов в квазиоднородном внешнем поле.
- 9. Постоянное магнитное поле.

- 10. Магнитный момент.
- 11. Магнитная энергия постоянных токов. Коэффициенты самоиндукции и взаимной индукции.
- 12. Токи в квазиоднородном магнитном поле.
- 13. Уравнения для электромагнитных потенциалов.
- 14. Электромагнитные волны.
- 15. Плоские монохроматические волны.
- 16. Запаздывающие потенциалы.
- 17. Дипольное излучение.
- 18. Квадрупольное и магнитно-дипольное излучения.
- 19. Спектральное разложение излучения.
- 20. Торможение излучением.
- 21. Рассеяние электромагнитных волн.
- 22. Система уравнений Максвелла в средах.
- 23. Электростатика проводников.
- 24. Электростатика диэлектриков.
- 25. Постоянный ток в проводящих средах.
- 26. Квазистационарное электромагнитное поле. Скин-эффект.
- 27. Постоянное магнитное поле в средах
- 28. Электромагнитные волны в диэлектриках в отсутствие дисперсии
- 29. Теорема Пойнтинга и единственность решения уравнений Максвелла. Плоские волны в диэлектрике.
- 30. Отражение и преломление плоских волн на границе двух сред.

Описание технологии проведения

Экзамен проходит в устной форме. Студенту предлагается 2 вопроса из полного списка вопросов, на которые он должен дать развернутый ответ в течение одного академического часа. В случае, если студент имеет оценку «неудовлетворительно» по одной из контрольных работ текущей аттестации, ему также предлагается одна из задач из соответствующей контрольной работы.

Требования к выполнению заданий, шкалы и критерии оценивания

«Отлично»: Подробные и безошибочные ответы на основные и дополнительные вопросы, полное понимание и свободное владение материалом, умение решать практические задачи

«Хорошо»: Подробные ответы на поставленные вопросы с мелкими ошибками, незначительные пробелы в знании материала, умение решать практические задачи

«Удовлетворительно»: Неудовлетворительные ответы на один из основных вопросов КИМа и некоторые дополнительные вопросы, неполное знание или понимание материала, низкие навыки решения практических задач

«Неудовлетворительно»: плохое знание материала, неудовлетворительные ответы на вопросы КИМа и большинство дополнительных вопросов, отсутствие навыков решения практических задач